下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、此文档仅供收集于网络,如有侵权请联系网站删除整式的乘法(基础)【学习目标】1. 会进行单项式的乘法 , 单项式与多项式的乘法 , 多项式的乘法计算2.掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数, 相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用 .( 2)单项式的乘法方法步骤: 积的系数等于各系数的积, 是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值
2、;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母, 要连同它的指数写在积里作为积的一个因式 .( 3)运算的结果仍为单项式, 也是由系数、 字母、字母的指数这三部分组成 .( 4)三个或三个以上的单项式相乘同样适用以上法则.要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即 m(abc)mambmc .要点诠释:( 1)单项式与多项式相乘的计算方法, 实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题 .( 2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.( 3)计
3、算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号 .( 4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果 .要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加 . 即 a bm nam an bm bn .要点诠释: 多项式与多项式相乘,仍得多项式. 在合并同类项之前,积的项数应该等于两个多项式的项数之积. 多项式与多项式相乘的最后结果需化简,有同类项的要合并 . 特殊的二项式相乘: x ax bx2a b xab .【典型例题】类型一、单项式与单项式相乘1、计算
4、:只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除( 1) 3ab 21 a2b2abc ;3( 2) ( 2xn 1 yn )( 3xy)1 x2 z ;2( 3) 6m2 n (x y)3 1 mn2 ( y x) 2 33)题应把 xy 与 yx 分别【思路点拨】 前两个题只要按单项式乘法法则运算即可,第(看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算【答案与解析】解:( 1) 3ab 21 a2b2abc3312(aa2 a)(b2b b)c32a4b4c ( 2) ( 2xn 1 yn )( 3xy)1 x2 z2(2) (3)1( xn 1 x x2 )
5、( yn y)z23xn4 yn 1z ( 3) 6m2 n (x y)3 1 mn2 ( y x) 236m2 n ( x y) 3 1 mn2 ( x y) 23( 6)1( m2m)(n n2 )( xy)3(x y)2 32m3 n3 (xy)5 【总结升华】凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉举一反三:【变式】(2014?甘肃模拟)计算:223)2m?( 2mn)?(mn223)【答案】 解: 2m ?( 2mn)?(mn只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除=2 ×( 2)×(223) (m×mn×m
6、 n )=2m5n4类型二、单项式与多项式相乘2、计算:( 1)1 ab2 ab22ab4 b ;233( 2)1 xy3 y2x2 ( 6xy2 ) ;32( 3) 3 a2ab 0.6b24 a2 b2 ;23【答案与解析】解:( 1)1ab2ab22ab4b2331 ab2 ab21 ab( 2ab )1 ab4 b232231 a2b3a2b22 ab 2 33( 2)1 xy3 y2x2 ( 6xy2 )321 xy ( 6xy2 )3 y 2 g ( 6xy 2 ) ( x2 )( 6xy2 )322x2 y39xy 46x3 y2 ( 3) 3 a2ab 0.6b24 a2 b2
7、3 a2ab3 b24 a2b2232533 a24 a2b2ab4 a2b23 b24 a2 b2233532a4b24 a3b34 a 2b4 35【总结升华】 计算时,符号的确定是关键,可把单项式前和多项式前的“”或“”号看作性质符号,把单项式乘以多项式的结果用“”号连结,最后写成省略加号的代数和只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除举一反三:2【变式 1】 2m2n(6m4n)1 m3n2【答案】12解:原式 12m2 n2m2 4 n2m3 2 n2212m2 n2m6 n21 m6 n212m2 n7 m6n2 44【变式 2】若 n 为自然数,试说明整式n 2
8、n12n n1 的值一定是3 的倍数【答案】解: n 2n 1 2n n 1 2n2n 2n22n 3n因为 3 n 能被 3 整除,所以整式n2n12n n 1的值一定是3 的倍数类型三、多项式与多项式相乘3、计算:( 1) (3a 2b)(4a 5b) ;( 2) (x1)(x 1)(x21) ;( 3) (ab)(a2b)(a 2b)(ab) ;( 4) 5x(x22x1)(2 x3)( x5)【答案与解析】解:( 1) (3a2b)(4 a 5b) 12a2 15ab8ab 10b212a27ab10b2 ( 2) (x1)(x 1)(x21)( x2xx1)( x21)x41 ( 3
9、) (ab)(a2b)(a2b)(ab)( a2ab2b2 )(a2ab2b2 )a2ab 2b2a2ab 2b22ab ( 4) 5x(x22x1) (2 x3)( x5)(5 x310 x25x)(2 x27x 15)5x310x25x2x27x15只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除5x38x212x15 【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项,刚开始时要严格按法则写出全部过程,以熟悉解题步骤, 计算时要注意的是: ( 1)每一项的符号不能弄错; ( 2)不能漏乘任何一项4、( 2014 秋?花垣县期末)解方程:( x+7)(x+5)( x+1)( x+5) =42【思路点拨】先算乘法,再合并同类项,移项,系数化成1 即可【答案与解析】解:( x+7)( x+5)( x+1)(x+5) =42,x2 +12x+35( x2 +6x+5) =42,6x+30=42,6x=12,x=2【总结升华】 本题考查了解一元一次方程,多项式乘以多项式的应用,主要考查学生的计算能力,难度适中举一反三:【变式】求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化妆师工作计划及造型方案
- 保险公司内勤人员的工作流程与技能要求
- 信息安全经理安全文化建设方案
- 企业内部人才培训与开发方案
- 共享服务中心数据分析师数据分析项目总结报告
- 企业内部管理流程优化方案设计
- 共享岗人员培训计划
- Linux服务器管理与运维实战手册
- UI设计趋势与移动端界面交互设计规范
- 人力资源流程专员招聘流程优化方案
- 2025年中国铝铸件铸造行业市场前景预测及投资价值评估分析报告
- 2025年河北机关事业单位工人技能等级考试题库及答案
- 企业文档管理与归档操作规范
- 质量管理与思政
- 2025年度哈尔滨“丁香人才周”(春季)民兵教练员补充招聘20人笔试考试备考题库及答案解析
- 2025年肠道菌群行业发展现状与未来趋势白皮书
- 足疗服务篇培训
- 2026年镇痛泵的使用及护理
- 四川成都文化旅游发展集团有限责任公司下属企业招聘笔试题库2025
- 2025年秋青岛版(五四学制)(2024)小学数学二年级上册《智慧广场-简单的周期问题(一)》教案
- 春江花月夜赏析
评论
0/150
提交评论