



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习资料八年级下册勾股定理知识点和典型例习题D一、基础知识点:H勾股定理EFb内容:直角三角形两直角边的平方和等于斜边的平方;Ac表示方法:如果直角三角形的两直角边分别为a , b ,斜边为 c ,那么 a 2b 2c2b .勾股定理的证明ac勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是bc图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理a常见方法如下:方法一: 4SS正方形 EFGHS正方形 ABCD,化简可证方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与
2、小正方形面积的和为 S 41ab c22ab c2大正方形面积为B2S ( a b )2a22abb 2所以 a 2b 2c2方法三: S梯形1(ab)(a b) , S梯形2S ADES ABE21ab1c2 ,化简得证222 .勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 .勾股定理的应用已知直角三角形的任意两边长,求第三边在ABC 中,C90 ,则 cCGaBacbcabAaDcbcEabCa2b2 ,bc2a 2 , ac2b 2 知道
3、直角三角形一边,可得另外两边之间的数量关系可运用勾股定理解决一些实际问题 .勾股定理的逆定理如果三角形三边长a , b , c 满足 a 2b2c2 ,那么这个三角形是直角三角形,其中c 为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形 ”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a 2b2 与较长边的平方 c2 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;否则,就不是直角三角形。定理中 a , b , c 及 a2b2c2 只是一种表现形式,不可认为是唯一的,如若三角形三边长a , b , c 满足a2c2b
4、2 ,那么以 a , b , c 为三边的三角形是直角三角形,但是b 为斜边勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 .勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即 a2b2c2 中, a , b , c 为正整数时, 称 a , b ,c 为一组勾股数记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25 , 8,15,17 等用含字母的代数式表示n 组勾股数:精品文档学习资料22( n 2, n为正整数);22( n 为正整数);n1,2n,n 12n 1,2n2n,
5、2n 2n 1m2n2 ,2 mn,m2n 2 ( mn, m , n 为正整数)勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题 在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解 .勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错
6、误的结论 .勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决常见图形:CCCC30°BAADBADBABD二、 经典例题精讲题型一:直接考查勾股定理例 .在 ABC 中,C90已知 AC6, BC8求 AB 的长已知 AB17, AC 15,求 BC 的长分析:直接应用勾股定理222abc解: ABAC2BC 210 BCAB2AC28题型二:利用勾股定理测量长度例题 1 如果梯子的底端离建筑物9 米,那么15 米长的梯子可以到达
7、建筑物的高度是多少米?解析: 这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!根据勾股定理2222222所以 AC=12.AC+BC=AB, 即 AC+9 =15 , 所以 AC=144,例题 2 如图( 8),水池中离岸边D点 1.5米的 C 处,直立长着一根芦苇,出水部分BC的长是 0.5 米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC.解析: 同例题1 一样,先将实物模型转化为数学模型,如图2. 由题意可知 ACD中 , ACD=90° , 在 Rt ACD
8、中,只知道 CD=1.5,这是典型的利用勾股定理“知二求一”的类型。标准解题步骤如下(仅供参考):精品文档学习资料解:如图 2,根据勾股定理,222AC+CD=AD设水深 AC= x 米,那么 AD=AB=AC+CB=x+0.5x2+1.5 2=( x+0.5 ) 2解之得 x=2.故水深为 2 米.题型三 :勾股定理和逆定理并用例题 3 如图 3,正方形 ABCD中, E是 BC边上的中点, F 是 AB上一点,且 FB1 AB 那么 DEF是直角三角形4吗?为什么?解析: 这道题把很多条件都隐藏了,乍一看有点摸不着头脑。仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由 FB1
9、 AB 可以设 AB=4a,那么 BE=CE=2a,AF=3a,BF= a, 那么在 Rt AFD 、Rt BEF4和 Rt CDE中,分别利用勾股定理求出DF,EF 和 DE的长,反过来再利用勾股定理逆定理去判断DEF是否是直角三角形。 详细解题步骤如下:解:设正方形 ABCD的边长为 4a, 则 BE=CE=2a,AF=3 a,BF= a222222在 Rt CDE中, DE=CD+CE=(4 a) +( 2 a) =20a同理 EF2=5a2, DF 2=25a2在 DEF中, EF2+ DE2=5a2+ 20a2=25a2=DF2 DEF是直角三角形,且DEF=90° .注:
10、本题利用了四次勾股定理,是掌握勾股定理的必练习题。题型四 :利用勾股定理求线段长度例题 4 如图 4,已知长方形ABCD中 AB=8cm,BC=10cm,在边 CD上取一点 E,将 ADE折叠使点 D 恰好落在 BC边上的点 F,求 CE的长 .解析: 解题之前先弄清楚折叠中的不变量。合理设元是关键。解:根据题意得Rt ADE Rt AEF AFE=90° , AF=10cm, EF=DE设 CE=xcm,则 DE=EF=CD CE=8 x在 Rt ABF中由勾股定理得:222222,AB +BF =AF,即 8 +BF =10 BF=6cmCF=BC BF=10 6=4(cm)在
11、Rt ECF中由勾股定理可得:2222222 x=3(cm), 即 CE=3 cmEF =CE+CF,即 (8 x)=x +4 6416x+x =2+16注:本题接下来还可以折痕的长度和求重叠部分的面积。题型五:利用勾股定理逆定理判断垂直例题 5如图 5,王师傅想要检测桌子的表面AD边是否垂直与AB边和 CD边,他测得精品文档学习资料AD=80cm, AB=60cm,BD=100cm, AD边与 AB边垂直吗?怎样去验证AD边与 CD边是否垂直?解析: 由于实物一般比较大,长度不容易用直尺来方便测量。我们通常截取部分长度来验证。如图4,矩形 ABCD表示桌面形状,在AB上截取 AM=12cm,
12、在 AD上截取 AN=9cm(想想为什么要设为这两个长度?) ,连结 MN,测量 MN的长度。222如果 MN=15,则 AM+AN=MN, 所以 AD边与 AB边垂直;如果 MN=a 15, 则 92 +122=81+144=225,a2 225, 即 92 +122 a2,所以 A 不是直角。例题 6 有一个传感器控制的灯,安装在门上方,离地高4.5 米的墙上,任何东西只要移至 5 米以内,灯就自动打开,一个身高1.5 米的学生,要走到离门多远的地方灯刚好打开?解析: 首先要弄清楚人走过去,是头先距离灯5 米还是脚先距离灯5 米,可想而知应该是头先距离灯5 米。转化为数学模型,如图6 所示
13、, A 点表示控制灯,BM表示人的高度,BC MN,BC AN当头( B 点)距离A 有 5 米时,求BC的长度。已知AN=4.5 米 , 所以 AC=3米,由勾股定理,可计算BC=4 米 . 即使要走到离门4 米的时候灯刚好打开。题型六 :关于翻折问题如图,矩形纸片ABCD的边 AB=10cm,BC=6cm, E 为 BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD边上的点 G处,求 BE的长.变式:如图, AD 是 ABC的中线, ADC=45°,把 ADC 沿直线 AD 翻折,点 C 落在点 C的位置, BC=4,求 BC 的长 .三、勾股定理练习题(一)、选择题1、下
14、列各组数中,能构成直角三角形的是()A: 4,5, 6B: 1,1, 2C:6,8,11D:5, 12, 232、在 Rt ABC中, C90°, a 12, b16,则 c 的长为 ( ) A:26 B: 18C :20 D :213、在平面直角坐标系中,已知点P 的坐标是 (3,4) ,则 OP的长为 ()A:3B : 4C :5D : 74、在 Rt ABC中, C90°, B 45° ,c 10,则 a 的长为 () A:5B: 10C :D : 5505、已知 Rt ABC中, C=90°,若 a+b=14cm, c=10cm,则 Rt ABC
15、的面积是()2B、 36cm22D、 60cm2A 、 24cmC、 48cm6、若等腰三角形的腰长为10,底边长为12,则底边上的高为()A、6B、7C、8D、97、已知,如图长方形ABCD中, AB=3cm, AD=9cm,AED精品文档BFC第 7 题学习资料将此长方形折叠,使点B 与点 D重合,折痕为EF,则 ABE的面积为(2222) A 、 3cmB 、 4cmC 、 6cm D 、 12cm8、若 ABC中, AB13cm, AC15cm ,高 AD=12,则 BC的长为A 、14B、4C、14 或 4 D、以上都不对BC9、 如图,正方形网格中的ABC,若小方格边长为1,则 A
16、BC是 ()(A)直角三角形(B) 锐角三角形 (C) 钝角三角形(D) 以上答案都不对10、在一棵树的10 米高处有两只猴子,一只猴子爬下树走到离树20 米处的池A塘的 A 处。另一只爬到树顶D 后直接跃到 A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树D高是()A、 17B、 14C 、16D、15B(二)、填空题1、若一个三角形的三边满足c2a2b2 ,则这个三角形是。CA第 10题图2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为 60cm,对角线为 100cm,则这个桌面。(填“合格”或“不合格”)3、直角三角形两直角边长分别为3 和 4,则它斜边上的高为
17、 _。4、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形 A, B, C,D 的面积的和为。5、如右图将矩形 ABCD沿直线 AE折叠 , 顶点 D恰好落在 BC边上 F 处 ,AD已知 CE=3,AB=8,则 BF=_。6、将一根长为 15 的筷子置于底面直径为5 ,高为 12 的圆柱形水杯中,E设筷子露在杯子外面的长为h ,则 h 的取值范围是 _ 。B第 6题图CF(三)、解答题1、已知 ABC 的三边分别为k2 1,2k, k2+1 ( k 1),求证: ABC 是直角三角形 .( 9 分)如图,在2、如图,四边形ABCD中
18、, AB 3cm, BC 4cm, CD 12cm, DA13cm,且 ABC 900 ,求四边形ABCD的面积。(2 题图)精品文档学习资料3如图,在Rt ABC中, ACB=90°, CDAB, BC=6, AC=8,AADD求 AB、 CD的长BCE(3 题图)BFC( 4题图)4如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为 8cm, ?长 BC?为 10cm当小红折叠时,顶点 D 落在 BC边上的点F 处(折痕为AE)想一想,此时EC有多长? ?5如图, A、 B 是笔直公路 l 同侧的两个村庄,且两个村庄到直路的距离分别是 300m和 500m,两村庄之间的距离为 d( 已知 d2=400000m2) ,现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。问最小是多少?BAl(5 题图)参考答案:(一) 、 、 A、9、A10、 D(二)、直角三角形、合格、 12、6 、(三)、提示:证( k2 1)2+(2k )2=( k2+1) 522、解:连接 AC在 Rt ABC中,= 916 =5cmAB BC342 S ABC=2=6cm在 ACD中,+CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手运动装备市场行业跨境出海项目商业计划书
- 茶文化体验茶馆企业制定与实施新质生产力项目商业计划书
- 休闲车智能车载通信系统创新创业项目商业计划书
- 购物中心国际美食街企业制定与实施新质生产力项目商业计划书
- DB1301T 353-2020 西瓜集约化育苗技术规程
- 2025年二手电商平台信用评级与信用体系建设研究报告001
- 2025年儿童教育游戏化:儿童情绪智力教育的教学策略
- DB1301T 360-2020 全株玉米裹包青贮技术规程
- 宜昌市伍家岗区事业单位2025年统一公开招聘笔试历年典型考题及考点剖析附带答案详解
- 【成都】2025年上半年成都市人力资源和社会保障局所属事业单位招聘工作人员5人笔试历年典型考题及考点剖析附带答案详解
- 农村网格化管理制度
- 公交站牌制作合同协议书
- 旅行社之间旅游合作合同范本
- 湖南省岳阳市湘阴县长仑四校2024-2025学年下学期 5月联考八年级数学试题
- 2025年中考语文7-9年级上册必背课文【现代文+古诗文】66篇(打印版)
- 乡镇养老院建设年度工作规划
- 2025年中国煤炭装备制造行业分析与发展策略咨询报告(定制版)
- 2025-2030年中国微电网行业市场深度调研及发展前景与投资研究报告
- 2025山东济南先行投资集团有限责任公司及权属公司社会招聘169人笔试参考题库附带答案详解
- 项目总工面试试题及答案
- 联创合伙人协议合同协议
评论
0/150
提交评论