




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三节直线、平面平行的判定及其性质最新考纲1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题1直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行线面平行”)l性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行线线平行”)ab2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平
2、面平行(简记为“线面平行面面平行”)性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行ab平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a,a,则(2)垂直于同一个平面的两条直线平行,即若a,b,则ab(3)平行于同一个平面的两个平面平行,即若,则一、思考辨析(正确的打“”,错误的打“×”)(1)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线()(2)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行()(3)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面()(4)若直线a与平面内无数条直线平行,则a.()答
3、案(1)×(2)×(3)(4)×二、教材改编1已知直线a与直线b平行,直线a与平面平行,则直线b与平面的关系为()a平行b相交c直线b在平面内d平行或直线b在平面内d依题意,直线a必与平面内的某直线平行,又ab,因此直线b与平面的位置关系是平行或直线b在平面内2下列命题中正确的是()a若a,b是两条直线,且ab,那么a平行于经过b的任何平面b若直线a和平面满足a,那么a与内的任何直线平行c平行于同一条直线的两个平面平行d若直线a,b和平面满足ab,a,b,则bda错误,a可能在经过b的平面内;b错误,a与内的直线平行或异面;c错误,两个平面可能相交3平面平面的一个
4、充分条件是()a存在一条直线a,a,ab存在一条直线a,a,ac存在两条平行直线a,b,a,b,a,bd存在两条异面直线a,b,a,b,a,bd若l,al,a,a,则a,a,故排除a;若l,a,al,则a,故排除b;若l,a,al,b,bl,则a,b,故排除c;故选d.4在正方体abcda1b1c1d1中,e是dd1的中点,则bd1与平面ace的位置关系为_平行如图所示,连接bd交ac于f,连接ef,则ef是bdd1的中位线,efbd1,又ef平面ace,bd1平面ace,bd1平面ace.考点1与线、面平行相关命题的判定判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定
5、义、定理,无论是单项选择还是含有选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项1.(2019·全国卷)设,为两个平面,则的充要条件是()a内有无数条直线与平行b内有两条相交直线与平行c,平行于同一条直线d,垂直于同一平面b由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选b.2(2017·全国卷)如图,在下列四个正方体中,a,b为正方体的两个顶点,m,n,q为所在棱的中点,则在这四个正方体中,直线ab与平面mnq不平行的是()aa
6、项,作如图所示的辅助线,其中d为bc的中点,则qdab.qd平面mnqq,qd与平面mnq相交,直线ab与平面mnq相交b项,作如图所示的辅助线,则abcd,cdmq,abmq.又ab平面mnq,mq平面mnq,ab平面mnq.c项,作如图所示的辅助线,则abcd,cdmq,abmq.又ab平面mnq,mq平面mnq,ab平面mnq.d项,作如图所示的辅助线,则abcd,cdnq,abnq.又ab平面mnq,nq平面mnq,ab平面mnq.故选a.解答此类问题时,特别注意定理所要求的条件是否完备,图形是否有特殊情况,可通过举反例否定结论或用反证法推断命题是否正确考点2直线与平面平行的判定与性质
7、直线与平面平行的判定证明线面平行的常用方法(1)利用线面平行的定义(无公共点)(2)利用线面平行的判定定理(a,b,aba)(3)利用面面平行的性质定理(,aa)(4)利用面面平行的性质(,a,aa)一题多解如图,在几何体abcde中,四边形abcd是矩形,ab平面bec,beec,abbeec2,g,f分别是线段be,dc的中点求证:gf平面ade.证明法一:(线线平行,则线面平行)如图,取ae的中点h,连接hg,hd,又g是be的中点,所以ghab,且ghab.又f是cd的中点,所以dfcd.由四边形abcd是矩形得abcd,abcd,所以ghdf,且ghdf,从而四边形hgfd是平行四边
8、形,所以gfdh.又dh平面ade,gf平面ade,所以gf平面ade.法二:(面面平行,则线面平行) 如图,取ab的中点m,连接mg,mf.又g是be的中点,可知gmae.又ae平面ade,gm平面ade,所以gm平面ade.在矩形abcd中,由m,f分别是ab,cd的中点得mfad.又ad平面ade,mf平面ade.所以mf平面ade.又因为gmmfm,gm平面gmf,mf平面gmf,所以平面gmf平面ade.因为gf平面gmf,所以gf平面ade. 证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构
9、造平行四边形、寻找比例式证明两直线平行,注意内外平行三条件,缺一不可如图所示,在四棱锥pabcd中,底面abcd是菱形,pa平面abcd,pa3,f是棱pa上的一个动点,e为pd的中点,o为ac的中点(1)证明:oe平面pab;(2)若af1,求证:ce平面bdf;(3)若af2,m为abc的重心,证明fm平面pbc.证明(1)由已知四边形abcd为菱形,又o为ac的中点,所以o为bd的中点,又e为pd的中点,所以oepb.又oe平面pab,pb平面pab,所以oe平面pab.(2)过e作egfd交ap于g,连接cg,fo.因为egfd,eg平面bdf,fd平面bdf,所以eg平面
10、bdf,因为底面abcd是菱形,o是ac的中点,又因为e为pd的中点,所以g为pf的中点,因为af1,pa3,所以f为ag的中点,所以ofcg.因为cg平面bdf,of平面bdf,所以cg平面bdf.又egcgg,eg,cg平面cge,所以平面cge平面bdf,又ce平面cge,所以ce平面bdf.(3)连接am,并延长,交bc于点q,连接pq,因为m为abc的重心,所以q为bc中点,且.又af2,所以.所以,所以mfpq,又mf平面pbc,pq平面pbc,所以fm平面pbc.直线与平面平行的性质应用线面平行的性质定理的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线如图所示
11、,四边形abcd是平行四边形,点p是平面abcd外一点,m是pc的中点,在dm上取一点g,过g和ap作平面交平面bdm于gh.求证:apgh.证明如图所示,连接ac交bd于点o,连接mo,四边形abcd是平行四边形,o是ac的中点,又m是pc的中点,apmo.又mo平面bmd,ap平面bmd,ap平面bmd.平面pahg平面bmdgh,且ap平面pahg,apgh.要证线线平行,可把它们转化为线面平行即在应用性质定理时,一般遵循从“高维”到“低维”的转化,即从“线面平行”到“线线平行”; 而解决线面平行的判定时其顺序恰好相反教师备选例题如图,在四棱锥pabcd中,底面abcd为正方
12、形,点m在棱pb上,pd平面mac,求证:m为pb的中点证明连接bd,设ac与bd的交点为e,连接me.因为pd平面mac,平面mac平面pdbme,所以pdme.因为四边形abcd是正方形,所以e为bd的中点,所以m为pb的中点如图,四棱锥pabcd中,adbc,abbcad, e,f,h分别是线段ad,pc,cd的中点,ac与be交于o点,g是线段of上一点求证:(1)ap平面bef;(2)gh平面pad.证明(1)连接ec,adbc,bcad,e是ad的中点,bc綊 ae,四边形abce是平行四边形,o为ac的中点又f是pc的中点,foap.fo平面bef,ap平面bef,a
13、p平面bef.(2)连接fh,oh,f,h分别是pc,cd的中点,fhpd.pd平面pad,fh平面pad,fh平面pad.又o是ac的中点,h是cd的中点,ohad.又ad平面pad,oh平面pad,oh平面pad.又fhohh,平面ohf平面pad.又gh平面ohf,gh平面pad.考点3平面与平面平行的判定与性质证明面面平行的常用方法(1)利用面面平行的定义(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行(3)利用“垂直于同一条直线的两个平面平行”(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”(5)利用“线线平行”“线面
14、平行”“面面平行”的相互转化如图所示,在三棱柱abca1b1c1中,e,f,g,h分别是ab,ac,a1b1,a1c1的中点,求证:(1)b,c,h,g四点共面;(2)平面efa1平面bchg.证明(1)g,h分别是a1b1,a1c1的中点,gh是a1b1c1的中位线,ghb1c1.又b1c1bc,ghbc,b,c,h,g四点共面(2)在abc中,e,f分别为ab,ac的中点,efbc.ef平面bchg,bc平面bchg,ef平面bchg.a1g綊eb,四边形a1ebg是平行四边形,则a1egb.a1e平面bchg,gb平面bchg,a1e平面bchg.a1eefe,平面efa1平
15、面bchg.母题探究1在本例条件下,若点d为bc1的中点,求证:hd平面a1b1ba.证明如图所示,连接hd,a1b,d为bc1的中点,h为a1c1的中点,hda1b.又hd平面a1b1ba,a1b平面a1b1ba,hd平面a1b1ba.2在本例条件下,若d1,d分别为b1c1,bc的中点,求证:平面a1bd1平面ac1d.证明如图所示,连接a1c交ac1于点m,四边形a1acc1是平行四边形,m是a1c的中点,连接md,d为bc的中点,a1bdm.a1b平面a1bd1,dm平面a1bd1,dm平面a1bd1,又由三棱柱的性质知,d1c1綊bd,四边形bdc1d1为平行四边形,dc1bd1.又dc1平面a1bd1,bd1平面a1bd1,dc1平面a1bd1.又dc1dmd,dc1,dm平面ac1d,平面a1bd1平面ac1d.本例的证明应用了三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化如图所示,四边形abcd与四边形adef都为平行四边形,m,n,g分别是ab,ad,ef的中点求证:(1)be平面dmf;(2)平面bde平面mn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省2025届数学七下期末学业质量监测试题含解析
- 企业战略影响下的可持续发展路径试题及答案
- 续方管理中的难点与对策计划
- 重庆十一中2025届数学八下期末达标检测模拟试题含解析
- 学期工作总结与展望计划
- 江苏省苏州市立达中学2025届数学七下期末学业质量监测试题含解析
- 急诊医学志愿者的参与计划
- 新年实现财务管理的工作安排计划
- 紧贴时事的计算机二级VB试题及答案
- 水务管理数字化转型分析计划
- 阶梯型独立基础(承台)配筋率验算
- 医院医生电子处方笺模板-可直接改数据打印使用
- 织金新型能源化工基地污水处理厂及配套管网工程-茶店污水处理厂环评报告
- 陕西省2023年中考英语真题(附答案)
- 中医内科学-咳嗽课件
- 夏商周考古-郑州大学中国大学mooc课后章节答案期末考试题库2023年
- 左右与东南西北
- 紧固件名称中英文对照表
- 失眠之中医问诊单
- 银行个人业务柜面操作风险点防控手册(印刷版)模版
- 幼儿园开辟小菜园的教育价值及实施策略探究 论文
评论
0/150
提交评论