版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、模拟智能的整体思路 模拟智能的整体思路、自编程序1、自编程序的基本要点。下面我们看一看现在所有人工智能程序整体的不足:它们是采用由研究人 员分析人类智能的特点,然后把这些特点模型化、算法化,有时还采用一些数 学理论进行处理,最后编成程序。一旦程序编成,系统就会按程序固定的方式 进行智能处理工作。既不灵活又受编程人员对智能认识的限制。而人类智能是灵活的,它可以随情况的变化想出新的处理方式来。先不考 虑这个 想出”的来源,就是这种现象也表明人类智能不是按某些固定的方式进 行操作的。我们首先要由此开始模拟人类智能。智能的本质是大脑的某类操作能力, 某些对信息的操作能力,在计算机中, 操作是由程序实现
2、的。因此我们首先把智能与计算机某些程序对应起来(我们 先不要在它们是那些程序上考虑),人类智能不断出现新的处理方式,相当于计 算机不断自己编写新的程序。于是我们模拟人类智能的思想先(仅仅是先”还有很多 后”否则智能问题就太简单了)要解决计算机自编程序问题。如果从目前计算机程序语言考虑,问题就麻烦了。比如我们用 C+语言自 编程序,就会出现如何让计算机理解语言、语法?如何设计程序?如何调试程 序?而这些则首先需要计算机有较高的智能才能做到,我们便陷入一个不能前进 的死胡同。但是我们观察我们肢体活动的过程,就会发现那不过是一些小动作的直接 连接。按照这种观察。我们可以得到这样一种编制程序的方法,首
3、先编写一些 成功运行的小程序块,然后用把它们前后连接的方式组成大程序。这就是我们 需要的自编程序的方法。循环怎么办?条件转移怎么办?我们还以肢体活动为参考,肢体活动是在 大脑指挥下工作的,肢体活动程序是按大脑指挥调用的,这与计算机程序不同。 计算机程序一旦运行,程序便取得完全的控制权,没有另外的东西监视控制它, 必须由程序中的循环、转移语句控制程序的流向。我们模拟人类智能,也要另 设一个控制运行的系统,因此自编程序中不需要有循环和转移存在,这样就不 必考虑程序编写时由这些语言造成的死机问题。到此,我们已经解决了计算机模拟人类智能的自编程序功能的程序结构和 编写方式问题。预先设置一些小程序作为自
4、编程的原料料,然后用把它们连接 到一起的方式编写程序。(其实我们使用的高级计算机语言,也是预先编制好很 多小程序,用高级计算机语言调用它们,我们写的高级语言源程序也是对那些 小程序的一种连接。)但是我们这样还不能真正的让计算机自编出程序来,因为还有一些重大问 题我们没有解决,程序将如何产生?程序产生后将如何调试?我们以后再介绍。2、这里自编的程序与原来计算机程序的异同比较。通过上面的叙述,我们可以看出这里的自编程序与目前计算机的程序有很大差别,也有相同的地方。首先看相同的地方:这里的程序也是由计算机执行的,因此它的基本元素还是 计算机语言。但是这里的程序还有很多与计算机程序不同的地方。a、在这
5、种程序的基本单元是建立在计算机语言之上的小程序,这些小程序必须能够独立的成功的运行。b、 编写程序只需要对小程序进行简单的连接, 编写程序是不需要高智能的参与。c、 在这种自编程序中没有流向控制,因此程序不会因为流向问题而出现死机。d、因为程序中没有流向控制,程序的流向还要由主系统控制,编写后的程序不象 目前计算机程序那样可以获得对计算机的完全控制权,而是在主系统的监视和 控制下执行程序。由于这种自编程序的这个特点,因此它的能力就完全受到小程序的性能的限制, 只要小程序选择的适当,很难出现失控(计算机的运行超出控制者的控制)的 情况。当然由于程序的控制权在主系统程序手中,主系统的编写会使智能系
6、统 具有主动性和自主性,然而这正是我们需要的。担心系统会失控要从主系统的 编写(它是人编程序)入手。3、自编程序母程序的选择自编程序是一种基本技术,它可以应用在各种形式的智能系统之中,这就 是我们这里要介绍的自编程序的目标选择。可以这样说,目前的任何一种人工 智能程序,加入我们介绍的自编程序技术,都可以使该智能系统的智能得到在 工作中的改善提高的效果。表面看,我们用一些已经成功运行的人工智能程序 (如一些专家系统程序、一些推理机程序、一些人工神经网络程序)加入自编 程序技术,进行程序的改进和提高,比较容易见成效。然而由于他们的程序在 原理上与我们的自编程序有所不同,往往很难从他们的程序中分解出
7、直接连接 不用流向控制的小程序(这里的小只是相对于自编程序而言,有时并不真小) 因此无法实现我们意义的自编程序,以改进这些人工智能系统的性能。另外,很多人工智能系统程序都有自己的专利保护和加密措施。我们把他 们的程序改进为自编程序的系统及会遇到侵犯人家专利的问题,又会受加密的 影响而无法掌握人家程序的核心,从而使我们的改进措施无效。所以我以为, 虽然在目前的人工智能系统上添加自编程序技术以改进和提高它们的性能,是 最简便易行的方法,但是实行起来的难度却是最大的。因此我们可以以语言系统为目标,构建以自编程序技术为核心的智能系统 是目前较为简单的方法。它是以各种语言为处理对象,以自编程序为处理语言
8、 的程序。以实现图灵检测似的人际交流,并在收集人类知识的基础上提出自己 见解和观点为智能目标的强人工智能系统。表面上看,这种强人工智能除去野 心比目前的自然语言理解系统大以外,没有多少差别。但是实际情况却不同。 由于自编程序技术的基点是系统自己生成能力,因此在编写系统程序时,我们 根本不必考虑系统的词汇库问题,不必考虑系统的语法和语言逻辑问题。这些 问题完全由系统在学习中自己解决。我们在编制系统程序(它一定要由人来编 写)只考虑系统的理解能力、表达能力、提出解决问题能力、自主决策能力是 怎样来的,而不必为系统考虑理解能力、表达能力、提出和解决问题能力、自 主决策能力的程序是什么样子。大家应该注
9、意到,这是一个与现在编程思想绝 对不同的一种新编程思想。我们还可以以神经元信息为目标,构建智能系统。它比以语言为目标的系 统要复杂一些,但是它与人类智能更加接近。因为神经元信息中包含着感觉信 息,这就使我们的智能系统可以实现由感觉到提出理论的全面的类似人类智能 的模拟。也就是说,我们的可以使我们模拟的强人工智能由感觉获得的信息一 直到把它们加工为科学理论。在以神经元信息为目标的构建智能中又有以模拟反射为基础和以模拟神经 兀网络为基础两种,以模拟反射为基础与模拟神经兀为基础的区别在于,反射 只考虑大脑神经联系的起点与终点,不考虑中间的传递过程。神经元网络则需 要考虑信息传递的所有中间过程。4、自
10、编程序的产生和检验。我们前面已经指出,用自编程序作为切入点可以解决智能系统的灵活性问 题。同时我们也已经对程序的结构进行了新的解释,使我们现在的程序可以方 便地由计算机自编。但是程序的是怎样产生的和程序产生后如何调试的问题还 没有解决。显然这两个问题不解决,你就是把自编程序吹得天花乱坠,也不能 解决智能问题。但是我们也应该看到,我们现在确定的程序是由一些能够成功运行的小程 序直接连接而成的,在这种程序的结构中,没有控制程序流向的转移和循环。 这样一种程序可以再无智能或智能很低的情况下编制和调试。这也是为什么我 们如此限制自编程序的结构的主要原因。下面我们首先介绍一种没有智能情况下自编程序的过程
11、。我们考虑这样的情况,我们面前已经有一些能够成功运行的小程序。如何 把它们连结成大程序呢?我们可以用一个随机组合操作。随便地把一个小程序 与另一个小程序连接起来,这种随机地连接当然不需要什么智能。它是连接出 来的东西也不能够正确的执行什么任务。我们就把这种操作作为自编程序的第第二步是把连接的东西记录下来,以便使系统知道已经做过那些连接。我 们把这种记录叫做印象程序。第三步是把这个程序拿去执行,并有人或系统自身(有人监视的系统功能 比较简单,但是自动化程度差。资深坚实的自动化程度高,但是系统的结构会 几倍的复杂。)监视程序的执行,把执行结果统治给系统。第四步是把成功的印象程序保存为最后的程序,这
12、种程序叫做经验程序。只有如果连接的程序执行不成功,就进入第五步。那时就返回第一步重新随机 连接小程序,重新形成印象程序。同时把不成功的程序纪录为负经验程序,也 就是失败的印象程序。在重返第一步随机组成新程序后先把新组成与负经验程 序比较,如果相同,就把它否定掉,不进入第二步(纪录为新印象程序)。那些与负经验程序不同的才被记录为新印象程序。然后继续执行第二、第三、 第四步。如果再次不成功,就再次返回第一步。直到找出一种成功的随机连接 后的程序。上述过程也是一个计算机程序,它就是系统程序的一个核心部分,它是自 编程序的母程序。我们可以把上述过程作为一个流程为计算机编写自编程序的 母程序。这个母程序
13、可以同时完成自编程序的编写和调试工作。上述过程的核心操作是随机连接,因此完全不需要有智能的参与,就可以 自编出新程序来。因此可以成为我们由无智能状态产生出智能的基本系统程序。 有关智能的操作,都可以有这个无智能的自编程序系统编出。当然我们也可以看出,这个自编程序的方式产生一个新程序的速度会很慢。 它要在大量随机连接中通过试运行选择出能够运行的新程序。如果我们的模拟 智能系统的全部能力都靠这种方式编写程序,那么系统生成智能的速度就会太 慢了。因此我们还要通过其他方式为我们的模拟智能系统实现自编程序。我们把我们的模拟智能系统自编程序已产生新的能力的过程叫做学习过 程。5、组合不爆炸在计算机理论中流
14、传着一种组合爆炸的说法,这种说法是组合就会引起组 合出的东西无限增加,最后导致组合成为计算机无法承受的操作。人们把这种 计算机无法承受的组合叫做组合爆炸。在上面我们介绍的无智能自编程序过程中,核心操作是随机组合,于是有 些人又会提出组合爆炸的老问题。但是凡事都需要具体事情具体分析。如果组 合时的元素(组合所用材料)数量很少,组合就不会爆炸。因此在自编程序随机组合小程序时,如果选择的小程序是围绕找一个目标 进行的,而不是漫无边际的选择小程序,那么组合采用的元素就会很少,就不 会出现组合爆炸。这就是组合不爆炸。在上述自编程序的母程序设计中,我们设计了印象程序,负经验程序,也 是为了减少在自编程序时
15、,重复那些不成功的组合。加快随机组合的时间。这 一切都会使我们的随机组合不连带着组合爆炸。二、模拟智能系统的学习过程。1、模拟智能系统的学习是完全不同于计算机学习理论的学习。计算机学习理 论沿用人编智能程序的老思想。他们提出学习理论也是为了让计算机模拟的智 能更灵活,解决问题更好。有时用人力来解决问题费时费力,想发挥计算机的 高速特点。因此初衷不是坏的。但是他们定义的学习把方向搞偏了。他们为了 计算机理论的方便主观的定义了学习,学习成了一种解决问题的过程。成立一 个搜索问题解的过程。因此我 称赞”他们是对学习概念的强奸。那么什么是学习呢?学习是学习主体通过与学习客体相互作用,获得学习 对象的过
16、程。学习主体也叫学习者,它可以是人、动物和一切具有学习能力的 设备。学习客体也叫学习环境,它包括环境对学习主体的一切作用。学习对象 是学习中获得的东西。它包括能力和资料两大类。以往的学习理论都很轻视能 力的学习,包括教育理论研究的学习也是这样。而我们认为学习中获得能力是 智能的关键。智能是一些能力,它在人类个体出生时是没有的或不健全的(动 物也是这样),就是靠在学习中不断获得智力操作的能力而使智能产生的,使智 能发展的。而对于计算机系统来说,在学习中获得能力与该计算机能够自编程 序是一个含义。计算机学习理论定义的学习,是把计算机作为一个单纯的工具,让计算机 替编程者解决问题,这种计算机的能力是
17、研究者或程序员编写进去的。使计算 机有一定的学习能力,也是为了解决问题的方便。然而这种对学习概念的强奸, 就扼杀了学习的最最主要的功能,也就是在学习中自编程序(获得能力)的功 能。其性质的恶劣与强奸女人扼杀她们做正常女人的功能是异曲同工的。2、自主学习过程。我们在前面所说的由随机连接小程序来自编程序的流程,我们叫做自主学 习过程。这种学习过程的在人类遇到前所未遇的问题时,也会采用这种方式, 比如有些问题拟按规律考虑不出结果,你就可能瞎猜,这种瞎猜就类似于前面 的随机连接。自主学习过程是有实验基础的学习。它就是桑代克迷笼实验。桑代克实验是最早使动物自己学会动作的实验。在当时引起很大的轰动。 他能
18、够让猫自己学会打开笼子,那时是很稀罕的事情。这个实验现在看来就不再那么神奇。不过桑代克当时能够想出这个实验的 确不简单!桑代克准备好一个装有看门机关的笼子,这个笼子后来叫做迷笼。 他把饥饿的猫放到笼子里,关好门,笼外放上食物。然后观察猫的动作。起初, 猫胡乱的动作,根本无法打开笼门的插销。经过很长时间后,猫偶然碰到笼门 的插销,把门打开。观察者统计这段动作的时间。然后把同一只猫在饥饿时再次放到笼中重复这个实验。观察猫的动作并统 计时间。可以看到猫继续用胡乱的动作试图出笼。并最终偶然打开笼门出笼吃 食物。这个过程进行多次后,就会发现,猫的错误动作越来越少,从放入笼子 到出笼的时间越来越短。最后,
19、猫可以在一放到笼子以后,马上打开笼门,跑 出笼子吃食物。这表明猫已经通过大量的胡乱动作,经过学习学会了打开笼门 的动作。这个实验的重要在于它是猫在没有任何模仿或引导的情况下,自己学会了 打开笼门。由于这个学习完全是胡乱加偶然,显然是不需要任何智能的学习, 而形成的经验是比较复杂的操作。它为我们指出了人类个体完全可以通过这样 的方式学习,从无智能到有智能,从无意识到有意识。我对婴儿动作学习的观 察,也证实了这一点。我们应该看到,猫学会打开笼门的动作完全是自己独立学习而成的。人为 的实验条件只是对猫学习的环境设置,在实验中人不能通过任何方式引导或诱 导猫学会动作。因此猫在学习中完全是自主的。我在我
20、的学习理论中,一直把 桑代克类型的学习过程叫做自主学习过程。为什么叫它为自主学习过程呢?桑代克实验表现出的学习,是在机体对 件事情毫无经验的情况下进行的。没有经验,它就用胡乱加偶然的方式学习经 验,形成应付环境的操作方法。这个过程没有任何其它什么来教它,甚至不用 同种类的生物来教它,显示了系统完全的自主性。这个实验提示我们,如果要求一个系统摆脱人编程序的限制,就必须让它 能够学习,这种学习不是为了求某种解的答案,而是学会一种解决问题的操作, 并且以后不断使用这个操作解决问题。这种学习是一种能够自编程序的学习。 而自主学习过程是系统自主独立的一种模式。一个计算机系统,如果其底层的 程序不编写任何
21、智能,而是靠自主学习积累经验,自编程序,那它就会发展出 智能,并进而发展出高级智能。计算机通过这种模式,其系统可以不用人编智 能程序,而在遇到原来没有遇到的事物时,通过胡乱加偶然,形成新的程序。 于是系统就可以摆脱人编程序,自主地产生出智能了。当然,如果所有后天性的程序都用胡乱加偶然的方式,系统每形成一个程 序都会很慢,要系统学会人类智能是不可能的。其实这并不是问题,人类个体 如果脱离人类社会,独立通过胡乱加偶然的方式学习,也不会产生人类智能。 狼孩、野生儿、囚禁儿不能产生人类智能,就是这个道理。胡乱加偶然的方式 只是系统的一个独立自主的方式,完全掌握人类智能,还需要学习人类的知识 和经验。3
22、、自主学习过程在自编程序中的发动机制(需要机制与奖惩机制之争)。我们在前面已经片断地介绍了由自主学习过程实现电脑自编程序的母程序 流程。它并不完整,因为它没有发起和终止程序编写的部分。我们知道,传统的计算机程序都是由程序操作人员或用户来发动它的每一 个程序的运行的。而人类只能则不可能是由其它人来发动的。它是大脑自主发 动的。是什么东西是大脑自主地发动它的活动呢?我们认为是大脑自主发动活 动的是需要机制,需要机制的初级形式是欲望,也就是说需要与欲望是一回事, 欲望是一种低级需要而已。在这个智能系统的驱动力问题上,我发现人们有很大的争执,不少人认为这个 发动机制应该是奖惩机制。于是我们对智能系统自
23、编程序的讨论,不得不转向 对系统驱动力的研究。首先我们回忆一下奖惩理论的来源。在桑代克迷笼实验成功以后,他对自己的实验提出解释。他把这个实验的 过程叫做尝试错误学习。他认为猫学会动作的原因是奖励,也就是猫在打开迷 笼后获得食物,获得了食物的奖励。而这种奖励使猫学会的动作得到渐渐的巩 固。就此他提出尝试错误的驱动力是奖励与惩罚,并确立了自己的奖励与惩罚 理论。他的奖励与惩罚理论由于迷笼实验和一系列白鼠走迷津实验的支持,在当时很 有影响。但是后来被认知学派的托尔曼用实验证伪。托尔曼设计了一个实验,他让两组白鼠学习走迷津。迷津中设置着较复杂 的道路,在其中一个地方放有食物(每次都放到同一地点)。学习
24、的目的是让白鼠学会从迷津中迅速的找到食物。所以采用一组(即不止一只)白鼠,就是为 了计算学习所需时间,取统计的结果。这两组白鼠一组是对照组,这一组从实 验一开始就在迷津中放好食物。另一组是主要实验组,开始在迷津中不放食物, 这样白鼠会没有奖励地在迷津中白跑。到实验中期再在迷津中放入食物,让白 鼠进行找到食物的学习。如果桑代克理论成立,奖励是学习的关键因素,那么主实验组的白鼠会因 为最初没有奖励,什么也学不到,它们的学习时间等于比对照组的少。显然最 后学会的时间要比对照组长(把白跑的时间也计算在内)。然而托尔曼实验的最后结果是主实验组比对照组的学习时间要短。这说明 在白跑过程中,尽管没有奖励,白
25、鼠也在学习迷津里的道路情况。从而证明奖 励不是学习的关键因素。推翻了桑代克理论。托尔曼是认知学派的,他的解释是在白鼠最初的学习中,头脑中形成了对 道路的认知地图。至于为什么形成这个地图,他认为这是白鼠本来的欲望。我认为托尔曼实验的意义就在于它推翻了奖励是学习的关键因素。但是,奖惩理论并没有因为托尔曼实验对他的证伪而退出心理理论。这是 因为桑代克属于心理学行为学派,托尔曼属于心理学认知学派,两派谁也不服 谁,各自坚持各自的说法。他们的观点又分别带到人工智能理论中来。于是在 一些人工智能理论中,奖惩理论还有它的市场。由于托尔曼对他的实验解释得也不好,我就用需要机制来代替托尔曼的认 知地图理论解释托
26、尔曼实验。需要机制理论是这样:机体发动活动(活动的驱 动力)是有需要机制完成的。当机体产生需要后,便会在机体内寻找经验进行 活动以实现需要,如果没有相应经验,就会发动学习活动积累相应的经验。4、需要机制的计算机模拟。有很多人认为计算机不可能有自己的欲望,这是 一种对计算机的误解。不是计算机不可能有自己的欲望,而是编程者不想让计 算机有自己的欲望。我的这种说法绝对不是我个人的想象,请看下面的证据。 在现在的计算机程序中已经表现出程序的一些需要。例如当程序需要你输入一 些指示时它会提醒你,并等待你的输入,你输入的东西满足它的要求后再继续 后面的运行。你输入的东西不满足它的要求,它就拒绝运行或再次提
27、示你。当 然,这种程序的需要,是编程人员为了自己程序目标设置的需要,不是计算机 自身的需要。但是既然我们可以在编程时为程序的目标设置需要,也就可以在 编程时考虑计算机自己的需要是什么,为计算机设置自己的需要。这就会使计 算机具有了自己的欲望。当然这里所谓的计算机自己的需要还是靠程序模拟出 来的,而不是计算机自己生长出来的。从理论上讲,计算机模拟的自己的需要,可以完全与人类一致。比如人们往往 最常用来调侃的问题就是:计算机能够有性欲吗?其实从理论上是完全可能的 它也可以分不同层面的模拟。比如仅在语言层面上模拟,你可以分别编制女性 程序和男性程序。你可以使不同程序在不同性需要的驱动下,对异性语言感
28、兴 趣,愿意与异性(人或程序)交谈。也可以进一步为机器人编制不同性别的程 序,完善它们的外设结构,使它们可以在性需要的驱动下与异性交往。当然, 理论上的可能必须与实际的需要相一致才能转化为商品。如果实际上我们并不 需要有性别的计算机,那么它们就不会出现在市场上。那么在程序中需要机制是什么样的结构呢?简单的需要机制就是一些专门设置 的双值变量,我叫做需要变量。一个值表示需要的满足,另一个值表示需要的 不满足。一个计算机系统具有多种需要,就为它设置多个需要变量。需要由模,激发拟感觉机制或一般的计算机输入系统激发(激发方式根据程序目标确定) 时把需要变量置“1 ”,表示需要的不满足。再由这个不满足态
29、发动系统内的相 关程序以满足需要的活动。(例如我们设计这样一个有趣的小程序,设置一个饥 饿需要,当外部输入一种食品词汇时,就激发了这个饥饿需要,饥饿需要的1 值就会搜索并调出系统中一些有关食品的词,当调用完成后,程序自动把饥饿 需要置0,此项需要终止。如果我们为这个程序设置多种需要,我们用不同词 汇引诱这个程序,就会看到程序在自己的需要的驱动下,为我们调用出不同满 足需要的词汇来。)复杂的需要变量应该是一个多值不连续的变量,不同值表示不满足或满足 的不同程度,它们也相应表示出该需要激发后调用程序的优先响应级别。更复杂的需要机制应该能够以基本需要(原始欲望)为基础,产生出一些 高级需要,组成由低
30、级到高级的需要层次。这种复杂的需要机制,有一个专门 的理论支持,那就是 需要在学习中生成理论”,我们在较后的时候再作详细介 绍。5、需要机制与奖惩机制有什么区别?如果简单的分析,把需要的满足于奖励对应起来,把需要的不满足于惩罚 对应起来,那么需要机制与奖惩机制几乎一样。问题是这样的分析有一个缺点, 它忽视了惩罚只是需要不满足的一种形式。惩罚不等于没有得到需要。惩罚往 往是得到了与需要相反的东西。而相反的东西作为惩罚,虽然会起到禁止机体 的一些行为的作用,但有时也会起到机体反抗行为的作用。用奖惩机制代替需 要机制,就会使我们的模拟智能系统失去模拟后一种现象的机会,就会使模拟 系统显得太乖了!不能
31、具有强烈的个性。另一个问题是托尔曼实验指出的事实,在需要没有得到满足的学习中,系 统也能够通过大量的反复得到一些与需要满足无关的东西,这些东西可能暂时 满足不了此需要,但是日后会满足另外的需要。因此用需要机制作为系统的内 驱力,系统会显示出一种无意识的 远见”。而用奖惩机制代替需要机制,没有 奖励,学习即告失败,它就会使系统呈现出一种无意识的短见”。从发展前途看,显然有 远见”的系统比 短见”的系统获得的能力更多。因此我认为有些人以为两种机制差不多的看法是错误的,就以上的分析看, 从将来的程序结构看,需要机制不会比奖惩机制复杂,但是从能力看,需要机 制的系统就会比奖惩机制的系统强很多。因此我主
32、张采用需要机制作为系统的 内驱力,而反对用奖惩机制作为系统的内驱力。6、完整的自主学习过程。我们在花费一些篇幅讨论了系统活动的内驱力以后,就可以回过头来继续 讨论系统的自主学习能力问题。自主学习能力是由人编程序完成的,它是我们 说的母程序中的一部分。这种能力与人类出生后的先天性能力相当。它本身不 是系统自编程序的一部分。从我们前面的介绍的学习过程流程可以看出,自主学习能力是一个具有循 环结构的程序,因此它也不具有我们提出的可自编程序的特征。完整的自主学 习能力程序基本就是按前面介绍的流程编写的,只是要在那个流程的前面增加 一个需要机制中需要变量发动学习,每一次学习成功,要由成功信息为需要变 量
33、置零,由需要变量的满足终止一次学习。由多次学习确认自编程序的完成, 形成可调用的自编程序。自主学习能力是一个循环反馈程序,其循环性我们可以从前面的介绍中看 出。其反馈性是由输入信息来确定自编程序运行的效果。反馈机制的结构要看 计算机的结构确定,如果计算机只是一台家用微机,那么只好靠人用键盘或鼠 标来输入反馈信息。如果计算机系统有模拟感觉的机制,那么就可以自行获得 反馈信息来进行学习了。显然后者与人类智能更加相像。我们在提出理论是并 不具体要求使用计算机的形式,就是为了使我们的模拟人类智能系统有更强的 适应性,使他在任何情况下都能够表现出较好的智力水平。这里大家要注意一个概念的使用,我们一直把程
34、序叫做自主学习能力程序, 而不叫做自主学习过程程序。因为学习过程是由具有学习能力的学习主体和学 习环境共同作用的过程,在我们的学习过程理论中,没有学习过程程序。学习 过程也不是个程序。更清晰地说,学习过程是一个比程序大得多的概念。而计 算机学习理论是把学习编写成程序的,这也是我们的学习过程理论与计算机学习理论完全不同之处自编程序的调用是由系统程序(它也是人编程序,涵盖着母程序)实现的 在需要产生时(需要变量被输入信息置1时)系统程序首先发动检索自编程序 的操作,如果有自编程序可以满足需要,就优先调用自编程序。如果没有自编 程序满足需要,就发动自主学习活动自编满足需要的程序。系统程序的这一部 分
35、,就保证了自编程序的调用。其结构显然非常简单。7、自主学习过程的进一步完善。A、基本途径说明。在上面的讨论中,有一点我们要非常清楚,自主学习 过程虽然可以自编程序,但是其编程效率非常最低。如果我们的系统只有这一 种学习能力,其发展到人类智能很有可能要经历人类智能发展史所需要的时间, 这是我们绝对不能忍受的。因此系统的学习能力要进一步完善。这里我们首先 要讨论在自主学习过程基础上的完善。这个完善途径有两条。一条是在原来自编程序的方式基础上的提高。另一 条是增加伴随学习过程。E、在原来自编程序方式上提高。在原来自编程序方式上提高,还有两个 途径:一条是提高小程序的级别,另一条是充分利用负经验。C、
36、什么是提高小程序的级别?小程序是人编程序,它们是我们经过充分 考虑编写出的生成思维和意识的基本程序。在初步的自主学习过程中,这些小 程序连接起来,成为自主学习过程自编出的程序。这些程序不仅可以用来实现 特定的需要,也可以被自主学习能力中的随即操作调用来执行其它任务,通过 效果检验确定能否成功。这种随即调用来执行其它任务是在模拟心理活动中的 经验移用(把一种经验用到其他方面)。移用是一种重要的心理活动现象,它对 于智能的形成具有非常大的意义。自主学习能力的随即操作还可以把自编成的程序作为小程序来使用,把它 们连结为更大的程序。这样,自编程序使用的小程序已经不是原来意义的小程 序,而包括已经自编出
37、的程序了。这样既扩大了编程时用小程序的数量,也提高了编成的灵活性。我们所说小程序级别的提高,就是说原来意义的小程序提 高为自编程序。这个提高可以反复,也就是说凡是以前自编出的程序,不管它 是由基本小程序组编的,还是有自编程序再次组编的,都可以继续组变成更大 的程序。这种组编也不会出现组合爆炸的现象。因为对失败程序的负经验纪录, 排除了大量不合理组编的出现。8、伴随学习对智能的意义。A、伴随学习相当于肌体的随行记者。伴随学习在机体活动中相当于一个 随行记者,它可以把机体的活动情况随时记录下来。当这些记录中包含一些新 活动的雏形时,这些记录就对智能的发展起了非常大的作用。下面我们通过一 个具体的例
38、子来体会伴随学习的意义。E、预测表现和预测活动。例如:在猫的头脑中记录着这样一段事件,主 人穿好衣服,开门,自己跟着主人出去玩,满足了自己出去玩的欲望。这个事 件经常发生,在猫的头脑中建立了牢固的反射。每当主人穿好衣服,通过反射 链,就激发猫出去玩的欲望,猫就随机采取了一个尝试满足出去玩欲望的动作 (例如到门口等的动作)。尔后猫出去玩的欲望得到满足,猫的这个动作便被确 认。以后,一旦主人有穿衣服的动作,猫就跑到门口等(有时候主人并不出门, 它就等错了!)。猫的这种活动表现出猫有一定的预测能力。但是在我们上述的 描述中,只通过简单的反射,不需要更复杂的心理活动参与,猫就可以完成上 述动作。但是加
39、入伴随学习后,上述过程就不同了。如果伴随学习把大脑活动也记 录下来,记录为:某反射链的一个环节发生,激发该反射链中的一个欲望,要 用某个动作实现这个欲望。并且通过多次预测现象的发生,使这个纪录被巩固。 那么当大脑调用这条记录时,一个新的大脑功能一一预测,就产生了!因为当大脑调用那条被巩固的伴随记录进行活动时,它就是在主动进行预测了。这种 预测与完全依赖反射实现的预测表现具有不同的性质。可能有些人还理解不了预测表现与预测活动的区别,预测表现是由反射激 发加随机行为的结果,预测活动时由预测经验(即伴随学习的记录)进行的活动。前者具有随机性,后者已经成为一种确定的活动了。C、预测表现和预测活动的比较
40、。在上面的过程中,如果没有伴随学习,就不 会形成对预测的纪录。预测就只能停留在表现层次,也就是说预测只能是附属 于反射功能的一种行为。然而有了伴随学习情况就不同了,它为预测记录了经 验,大脑可以不通过反射功能,而通过对预测经验的调用来进行预测。预测便 成为一个独立的活动了。下面我们对比反射型预测和经验型预测(这是两个为讨论方便暂时使用的 概念)的操作流程:反射型预测:反射链的形成 外部刺激激发反射链的一个环节 整个 反射链被激发 反射链中的一个欲望被激发 随机发动一个动作去满足于 网(这实际发动起一个自主学习过程)一一通过学习得到一个确定的满足欲望的活动。学习后,机体便产生对于这个特定刺激用特
41、定活动(自主学习确定的)表 现的预测表现。经验型预测:在反射型预测学习时记录伴随经验(预测经验)一一外部刺激激发经验一一找并激发相应反射链 一一激发反射链中的欲望 一一发动自主学 习确定实现表现的动作 确定预测表现的动作。学习后,机体也产生一个与特定刺激对应的特定的预测表现活动。对比后,我们会发现后者比前面多了一个环节,这从程序求简的原则上看 好像是不利的。但是正因为多了这一个环节,大脑就新产生了一个活动一一预测活动。大脑就向思维的产生迈进一步。9、模仿学习能力。A、模仿学习。在过去我们养猫时,猫是自己捉老鼠吃的,母猫如果有了 小猫,在小猫动作能力基本形成后,母猫就会教小猫学捉老鼠。它把捉到的
42、老 鼠不咬死,而是在小猫面前放开捉住,然后再放开,让小猫学着捉。这就是模 仿学习。人类的模仿学习就更多了。显然由于模仿学习有模仿对象的存在,系统可以减少学习时间,因此我们 要我们的模拟智能系统有模仿学习能力是加快系统学习速度的一个好方法。表面看,模仿学习只不过是增加一个模仿对象而已。但仔细从计算机模拟 角度考虑,就会发现模拟模仿学习会对系统提出很高的要求。例如如何让系统 接收对象的活动模式?如何让系统按模仿对象的活动模式活动?前者要求系统 有较好的模拟感觉设备,后者要求系统有较好的模拟活动设备。这也不是说在家庭微机上我们不能模拟模仿学习过程了,只是很不像而已 例如我们可以用字符串表示某种活动的形象,用另一些字符串表示模仿出来的 形象,一般说,这种PC机上的模拟,只有我们实验者承认它是模拟模仿学习, 很难叫局外人承认这一点。但是它的优点是给出模拟模仿学习的程序结构,一 旦用到机器人上,把程序稍加修改移植过去就可以了。E、模仿学习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025深圳展会活动合作合同范本
- 安全双控题库及答案解析
- 2025合同意向书范本模板
- 员工岗前安全培训考试题及答案解析
- 2025至2030全球及中国汽车语音控制系统行业产业运行态势及投资规划深度研究报告
- 2025至2030机场看台行业发展趋势分析与未来投资战略咨询研究报告
- 2025年锌合金市场调研报告
- 2025-2030绿色智能建筑认证标准对行业发展的影响分析
- 2025-2030绿色建材市场发展路径与环保政策影响深度调研
- 2025-2030经颅直流电刺激结合认知训练的商业化伦理边界探讨
- 光伏发电项目招标文件
- 12路基轻质填料EPS工法
- 美容师中级评分记录表
- 袋式除尘器日常点检表
- 人音版小学音乐三年级上册测试题(音乐理论)及答案
- 教师资格面试-75篇结构化逐字稿
- 油田生产调度管理与人员素质提升
- Aspen 中文培训资料
- GB 1886.358-2022食品安全国家标准食品添加剂磷脂
- GB/T 16422.2-2022塑料实验室光源暴露试验方法第2部分:氙弧灯
- GB/T 10045-2018非合金钢及细晶粒钢药芯焊丝
评论
0/150
提交评论