模拟电路复习(1、2、3、4、5、6、8章)康华光_第1页
模拟电路复习(1、2、3、4、5、6、8章)康华光_第2页
模拟电路复习(1、2、3、4、5、6、8章)康华光_第3页
模拟电路复习(1、2、3、4、5、6、8章)康华光_第4页
模拟电路复习(1、2、3、4、5、6、8章)康华光_第5页
已阅读5页,还剩94页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.1 集成电路运算放大器集成电路运算放大器2.2 理想运算放大器理想运算放大器2.3 基本线性运放电路基本线性运放电路2.4 同相输入和反相输入放大电同相输入和反相输入放大电 路的其他应用路的其他应用2.1 集成电路运算放大器集成电路运算放大器1. 集成电路运算放大器的内部组成单元集成电路运算放大器的内部组成单元图图2.1.1 集成运算放大器的内部结构框图集成运算放大器的内部结构框图2.3.1 同相放大电路同相放大电路3. 虚假短路虚假短路 图中输出通过负反馈的作用,图中输出通过负反馈的作用,使使vn n自动地跟踪自动地跟踪vp p,即即vp pvn n,或或vididvp pvn n0 0

2、。这种现象称为虚假短路,简称这种现象称为虚假短路,简称虚短虚短。 由于运放的输入电阻由于运放的输入电阻ri很大,所以,运放两输入端之间的很大,所以,运放两输入端之间的 ip- -in (vpvn) / ri 0,这种现象称为,这种现象称为虚断。虚断。 由运放引入负反馈而得到的由运放引入负反馈而得到的虚短虚短和和虚断虚断两个重要概念,是两个重要概念,是分析由运放组成的各种线性应用电路的利器,必须熟练掌握。分析由运放组成的各种线性应用电路的利器,必须熟练掌握。2.3.1 同相放大电路同相放大电路4. 几项技术指标的近似计算几项技术指标的近似计算(1)电压增益电压增益Av 根据虚短和虚断的概念有根据

3、虚短和虚断的概念有 vpvn, ip- -in0o211npivvvv RRR所以所以12121io1RRRRRA vvv(可作为公式直接使用)(可作为公式直接使用)2.3.1 同相放大电路同相放大电路4. 几项技术指标的近似计算几项技术指标的近似计算(2)输入电阻)输入电阻Ri 输入电阻定义输入电阻定义 iiiivR 根据虚短和虚断有根据虚短和虚断有 vivp,ii ip0所以所以 iiiivR(3)输出电阻)输出电阻Ro Ro02. 几项技术指标的近似计算几项技术指标的近似计算(1)电压增益电压增益Av 根据虚短和虚断的概念有根据虚短和虚断的概念有 vn vp 0 , ii0所以所以 i1

4、i2 12ioRRA vvv2on1niRRvvvv 即即(可作为公式直接使用)(可作为公式直接使用)2.3.2 反相放大电路反相放大电路2. 几项技术指标的近似计算几项技术指标的近似计算(2)输入电阻)输入电阻Ri 11iiiii/RRiR vvv(3)输出电阻)输出电阻Ro Ro02.3.2 反相放大电路反相放大电路2.4.1 求差电路求差电路 从结构上看,它是反相从结构上看,它是反相输入和同相输入相结合的放输入和同相输入相结合的放大电路。大电路。4on1ni1RvvRvv 3p2pi20RvRvv i114i2323141ovRRvRRRRRRv )(当当,2314RRRR 则则)(i1

5、i214ovvRRv 若继续有若继续有,14RR 则则i1i2ovvv 根据根据虚短虚短、虚断虚断和和n n、p p点的点的KCLKCL得:得:pnvv 2.4.3 求和电路求和电路1ni1Rvv - -3onRvv - 根据根据虚短虚短、虚断虚断和和n n点点的的KCLKCL得:得:2i231i13ovvvRRRR - -321RRR 若若0pn vv2ni2Rvv - - 则有则有2i1iovvv - -(该电路也称为加法电路)(该电路也称为加法电路)3.1 半导体的基本知识半导体的基本知识3.3 二极管二极管3.4 二极管的基本电路及其分析方法二极管的基本电路及其分析方法3.5 特殊二极

6、管特殊二极管3.2 PN结的形成及特性结的形成及特性 3.1 基本概念基本概念本征半导体本征半导体化学成分纯净的半导体。它在物理结构上呈单化学成分纯净的半导体。它在物理结构上呈单晶体形态。晶体形态。空穴空穴共价键中的空位共价键中的空位。电子空穴对电子空穴对由热激发而由热激发而产生的自由电子和空穴对。产生的自由电子和空穴对。空穴的移动空穴的移动空穴的运动空穴的运动是靠相邻共价键中的价电子是靠相邻共价键中的价电子依次填依次填充充空穴来实现的。空穴来实现的。由于随机热振动致使共价键被打破而产生由于随机热振动致使共价键被打破而产生空穴电子对空穴电子对 3.1.4 杂质半导体杂质半导体 在本征半导体中掺

7、入某些微量元素作为杂质,在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体主要是三价或五价元素。掺入杂质的本征半导体称为称为杂质半导体杂质半导体。 N N型半导体型半导体掺入五价杂质元素(如磷)的掺入五价杂质元素(如磷)的半导体。半导体。 P P型半导体型半导体掺入三价杂质元素(如硼)的掺入三价杂质元素(如硼)的半导体。半导体。 3.2.2 PN结的形成结的形成 3.2.2 PN结的形成结的形成 3.2.3 PN结的单向导电性结的单向导电性 当外加电压使当外加电压使PNPN结中结

8、中P P区的电位高于区的电位高于N N区的电位,称为加区的电位,称为加正向电压正向电压,简称,简称正偏正偏;反之称为加;反之称为加反向电压反向电压,简称,简称反偏反偏。 (1) PN(1) PN结加正向电压时结加正向电压时 低电阻低电阻 大的正向扩散电流大的正向扩散电流 3.2.3 PN结的单向导电性结的单向导电性 当外加电压使当外加电压使PNPN结中结中P P区的电位高于区的电位高于N N区的电位,称为加区的电位,称为加正向电压正向电压,简称,简称正偏正偏;反之称为加;反之称为加反向电压反向电压,简称,简称反偏反偏。 (2) PN(2) PN结加反向电压时结加反向电压时 高电阻高电阻 很小的

9、反向漂移电流很小的反向漂移电流 在一定的温度条件下,由本征激在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,所加反向电压的大小无关,这个电流这个电流也称为也称为反向饱和电流反向饱和电流。 PNPN结加正向电压时,呈现低电阻,结加正向电压时,呈现低电阻,具有较大的正向扩散电流;具有较大的正向扩散电流; PNPN结加反向电压时,呈现高电阻,结加反向电压时,呈现高电阻,具有很小的反向漂移电流。具有很小的反向漂移电流。 由此可以得出结论:由此可以得出结论:PNPN结具有单

10、结具有单向导电性。向导电性。 在一块本征半导体两侧通过扩散不同的杂质在一块本征半导体两侧通过扩散不同的杂质, ,分别形成分别形成N N型半导体和型半导体和P P型半导体。此时将在型半导体。此时将在N N型半型半导体和导体和P P型半导体的结合面上形成如下物理过程型半导体的结合面上形成如下物理过程: : 因浓度差因浓度差 空间电荷区形成内电场空间电荷区形成内电场 内电场促使少子漂移内电场促使少子漂移 内电场阻止多子扩散内电场阻止多子扩散 最后最后, ,多子的多子的扩散扩散和少子的和少子的漂移漂移达到达到动态平衡动态平衡。多子的扩散运动多子的扩散运动 由由杂质离子形成空间电荷区杂质离子形成空间电荷

11、区 对于对于P P型半导体和型半导体和N N型半导体结合面,离型半导体结合面,离子薄层形成的子薄层形成的空间电荷区空间电荷区称为称为PNPN结结。 在空间电荷区,由于缺少多子,所以也在空间电荷区,由于缺少多子,所以也称称耗尽层耗尽层。 3.3.2 二极管的二极管的V-I 特性特性二极管的二极管的V-I 特性曲线可用下式表示特性曲线可用下式表示)1e (/SDD TVIiv锗二极管锗二极管2AP152AP15的的V V- -I I 特性特性硅二极管硅二极管2CP102CP10的的V V- -I I 特性特性 3.4.2 二极管电路的简化模型分析方法二极管电路的简化模型分析方法1.1.二极管二极管

12、V V- -I I 特性的建模特性的建模 将指数模型将指数模型 分段线性化,得到二极分段线性化,得到二极管特性的等效模型。管特性的等效模型。DDS(e1)TnViIv(1 1)理想模型)理想模型 (a a)V V- -I I特性特性 (b b)代表符号)代表符号 (c c)正向偏置时的电路模型)正向偏置时的电路模型 (d d)反向偏置时的电路模型)反向偏置时的电路模型 3.4.2 二极管电路的简化模型分析方法二极管电路的简化模型分析方法1.1.二极管二极管V V- -I I 特性的建模特性的建模(2 2)恒压降模型)恒压降模型(a)V-I特性特性 (b)电路模型)电路模型 (3 3)折线模型)

13、折线模型(a)V-I特性特性 (b)电路模型)电路模型 3.5 特殊二极管特殊二极管 3.5.1 齐纳二极管齐纳二极管( (稳压二极管稳压二极管) ) 3.5.2 变容二极管变容二极管 3.5.3 肖特基二极管肖特基二极管 3.5.4 光电子器件光电子器件4.1 BJT4.1.1 BJT的结构简介的结构简介4.1.2 放大状态下放大状态下BJT的工作原理的工作原理4.1.3 BJT的的V-I 特性曲线特性曲线4.1.4 BJT的主要参数的主要参数4.1.5 温度对温度对BJT参数及特性的影响参数及特性的影响4.1 BJT4.3 放大电路的分析方法放大电路的分析方法4.4 放大电路静态工作点的稳

14、定问题放大电路静态工作点的稳定问题4.5 共集电极放大电路和共基极放大电路共集电极放大电路和共基极放大电路4.2 基本共射极放大电路基本共射极放大电路4.6 组合放大电路组合放大电路 半导体三极管的结半导体三极管的结构示意图如图所示。构示意图如图所示。它有两种类型它有两种类型:NPN型型和和PNP型。型。4.1.1 BJT的结构简介的结构简介(a) NPN型管结构示意图型管结构示意图(b) PNP型管结构示意图型管结构示意图(c) NPN管的电路符号管的电路符号(d) PNP管的电路符号管的电路符号集成电路中典型集成电路中典型NPNNPN型型BJTBJT的截面图的截面图4.1.1 BJT的结构

15、简介的结构简介 三极管的放大作用是在一定的外部条件控制下,通过载三极管的放大作用是在一定的外部条件控制下,通过载流子传输体现出来的。流子传输体现出来的。外部条件:外部条件:发射结正偏发射结正偏 集电结反偏集电结反偏4.1.2 放大状态下放大状态下BJT的工作原理的工作原理1. 内部载流子的传输过程内部载流子的传输过程发射区:发射载流子发射区:发射载流子集电区:收集载流子集电区:收集载流子基区:传送和控制载流子基区:传送和控制载流子 (以(以NPNNPN为例)为例) 由于三极管内有两种载流子由于三极管内有两种载流子( (自自由电子和空穴由电子和空穴) )参与导电,故称为双参与导电,故称为双极型三

16、极管或极型三极管或BJTBJT ( (Bipolar Junction Transistor) )。 IC= INC+ ICBOIE=IB+ IC放大状态下放大状态下BJTBJT中载流子的传输过程中载流子的传输过程2. 电流分配关系电流分配关系发射极注入电流发射极注入电流传输到集电极的电流传输到集电极的电流设设 ENCII 即即根据传输过程可知根据传输过程可知 IC= INC+ ICBO通常通常 IC ICBOECII 则有则有 为电流放大系数。它只为电流放大系数。它只与管子的结构尺寸和掺杂浓度与管子的结构尺寸和掺杂浓度有关,与外加电压无关。一般有关,与外加电压无关。一般 = 0.9 0.99

17、 。IE=IB+ IC放大状态下放大状态下BJTBJT中载流子的传输过程中载流子的传输过程 1 又设又设 是另一个电流放大系数。同样,它也只与管是另一个电流放大系数。同样,它也只与管子的结构尺寸和掺杂浓度有关,与外加电压无关。子的结构尺寸和掺杂浓度有关,与外加电压无关。一般一般 1 。CE IICB II2. 电流分配关系电流分配关系3. 三极管的三种组态三极管的三种组态(c) 共集电极接法共集电极接法,集电极作为公共电极,用,集电极作为公共电极,用CC表示。表示。(b) 共发射极接法共发射极接法,发射极作为公共电极,用,发射极作为公共电极,用CE表示;表示;(a) 共基极接法共基极接法,基极

18、作为公共电极,用,基极作为公共电极,用CB表示;表示;BJT的三种组态的三种组态 综上所述,三极管的放大作用,主要是依综上所述,三极管的放大作用,主要是依靠它的发射极电流能够通过基区传输,然后到靠它的发射极电流能够通过基区传输,然后到达集电极而实现的。达集电极而实现的。 实现这一传输过程的两个条件是:实现这一传输过程的两个条件是: (1)内部条件:内部条件:发射区杂质浓度远大于基发射区杂质浓度远大于基区杂质浓度,且基区很薄。区杂质浓度,且基区很薄。 (2)外部条件:外部条件:发射结正向偏置,集电结发射结正向偏置,集电结反向偏置。反向偏置。4.1.3 BJT的的V-I 特性曲线特性曲线 iB=f

19、(vBE) vCE=const. (2) 当当vCE1V时,时, vCB= vCE - - vBE0,集电结已进入反偏状态,开,集电结已进入反偏状态,开始收集电子,基区复合减少,同样的始收集电子,基区复合减少,同样的vBE下下 IB减小,特性曲线右移。减小,特性曲线右移。 (1) 当当vCE=0V时,相当于发射结的正向伏安特性曲线。时,相当于发射结的正向伏安特性曲线。1. 输入特性曲线输入特性曲线(以共射极放大电路为例)(以共射极放大电路为例)共射极连接共射极连接饱和区:饱和区:iC明显受明显受vCE控制的区域,控制的区域,该区域内,一般该区域内,一般vCE0.7V (硅管硅管)。此时,此时,

20、发射结正偏,集电结正偏或反发射结正偏,集电结正偏或反偏电压很小偏电压很小。iC=f(vCE) iB=const.2. 2. 输出特性曲线输出特性曲线输出特性曲线的三个区域输出特性曲线的三个区域: :截止区:截止区:iC接近零的区域,相当接近零的区域,相当iB=0的曲线的下方。此时,的曲线的下方。此时, vBE小于死区小于死区电压电压。放大区:放大区:iC平行于平行于vCE轴的区域,曲轴的区域,曲线基本平行等距。此时,线基本平行等距。此时,发射结正偏,发射结正偏,集电结反偏集电结反偏。4.1.3 BJT的的V-I 特性曲线特性曲线3. 静态工作点对波形失真的影响静态工作点对波形失真的影响截止失真

21、的波形截止失真的波形 饱和失真的波形饱和失真的波形3. 静态工作点对波形失真的影响静态工作点对波形失真的影响1. BJT的的H参数及小信号模型参数及小信号模型 H参数小信号模型参数小信号模型根据根据可得小信号模型可得小信号模型BJT的的H参数模型参数模型vbe= hieib+ hrevceic= hfeib+ hoevceBJT双口网络双口网络1. BJT的的H参数及小信号模型参数及小信号模型 模型的简化模型的简化 hre和和hoe都很小,常忽都很小,常忽略它们的影响。略它们的影响。 BJT在共射极连接时,其在共射极连接时,其H参数的数量级一般为参数的数量级一般为 S1010101010524

22、33oefereieehhhhh静态工作点与动态参数静态工作点与动态参数 Q (IB, IC VCE) 动态参数:Av, Ri, Ro 组态:共射极,共基极,共集电极共射极放大电路共射极放大电路 放大电路如图所示。已知放大电路如图所示。已知BJT的的 =80, Rb=300k , Rc=2k , VCC= +12V,求:,求:(1)放大电路的)放大电路的Q点。此时点。此时BJT工作在哪个区域?工作在哪个区域?(2)当)当Rb=100k 时,放大电路的时,放大电路的Q点。此时点。此时BJT工工作在哪个区域?(忽略作在哪个区域?(忽略BJT的饱和压降)的饱和压降)解:解:(1)A40300k2V1

23、bBECCBQ RVVI(2)当)当Rb=100k 时,时,3.2mAA4080BQCQ II5.6V3.2mA2kV12CQcCCCEQ IRVV静态工作点为静态工作点为Q(40 A,3.2mA,5.6V),),BJT工作在放大区。工作在放大区。其最小值也只能为其最小值也只能为0,即,即IC的最大电流为:的最大电流为:A120100k2V1bCCBQ RVImA6 . 9A12080BQCQ II V2 . 79.6mA2k-V12CQcCCCEQ IRVVmA62k2V1cCESCCCM RVVICMBQ II 由由于于,所以,所以BJT工作在饱和区。工作在饱和区。VCE不可能为负值,不可

24、能为负值,此时,此时,Q(120uA,6mA,0V),),end4.4.2 射极偏置电路(1)稳定工作点原理 目标:温度变化时,使IC维持恒定。 如果温度变化时,b点电位能基本不变,则可实现静态工作点的稳定。T 稳定原理: IC IE VE、VB不变 VBE IBIC(反馈控制)1. 基极分压式射极偏置电路(a) 原理电路 (b) 直流通路1. 基极分压式射极偏置电路(2)放大电路指标分析静态工作点CCb2b1b2BQVRRRV eBEQBQEQCQRVVII )(ecCQCCeEQcCQCCCEQRRIVRIRIVV IICQBQ 电压增益画小信号等效电路(2)放大电路指标分析方法:直流电压

25、源视为接地;电容视为短路电压增益输出回路:)|(LcboRRi v输入回路:ebbebeebebi)1(RiriRiri v电压增益:ebeLcebebLcbio)1()|()1()|(RrRRRriRRiA vvv画小信号等效电路确定模型参数已知,求rbe)mA()mV(26)1(200EQbeIr 增益(2)放大电路指标分析(可作为公式用)4.6.1 共射-共基放大电路21o1oio1iovvvvvvvvvAAA )1(2be1be21be1L11rrrRA vbe2Lc22be2L222)|(rRRrRA v其中 be2Lc22be12be21)|()1(rRRrrA v所以 12因为b

26、e1Lc21)|(rRRA v因此 组合放大电路总的电压增益等于组成它的各级单管放大电路电压增益的乘积。 前一级的输出电压是后一级的输入电压,后一级的输入电阻是前一级的负载电阻RL。电压增益2be2L1rR T1、T2构成复合管,可等效为一个NPN管(a) 原理图 (b)交流通路4.6.2 共集-共集放大电路4.6.2 共集-共集放大电路1. 复合管的主要特性两只NPN型BJT组成的复合管 两只PNP型BJT组成的复合管 rberbe1(11)rbe2 5.1 金属金属- -氧化物氧化物- -半导体(半导体(MOS)场效应管)场效应管5.3 结型场效应管(结型场效应管(JFET)5.2 MOS

27、FET放大电路放大电路5.1 金属金属-氧化物氧化物-半导体半导体(MOS)场效应管)场效应管5.1.1 N沟道增强型沟道增强型MOSFET5.1.2 N沟道耗尽型沟道耗尽型MOSFET5.1.3 P沟道沟道MOSFETP沟道沟道耗尽型耗尽型P沟道沟道P沟道沟道N沟道沟道增强型增强型N沟道沟道N沟道沟道(耗尽型)(耗尽型)FET场效应管场效应管JFET结型结型MOSFET绝缘栅型绝缘栅型(IGFET)耗尽型耗尽型:场效应管没有加偏置电压时,就有导电沟道存在:场效应管没有加偏置电压时,就有导电沟道存在增强型增强型:场效应管没有加偏置电压时,没有导电沟道:场效应管没有加偏置电压时,没有导电沟道场效

28、应管的分类:场效应管的分类:5.1.1 N沟道增强型沟道增强型MOSFET1. 结构结构(N沟道)沟道)L :沟道长度:沟道长度W :沟道宽度:沟道宽度tox :绝缘层厚度:绝缘层厚度通常通常 W L 5.1.1 N沟道增强型沟道增强型MOSFET剖面图剖面图1. 结构结构(N沟道)沟道)符号符号53MOSFET的基本工作原理5.1.1 N沟道增强型沟道增强型MOSFET2. 工作原理工作原理(1)vGS对沟道的控制作用对沟道的控制作用当当vgsgs00时时 无导电沟道,无导电沟道, d、s间加电压时,也间加电压时,也无电流产生。无电流产生。当当00vGS GS V VT T )时,)时,vD

29、SDS iD D 沟道电位梯度沟道电位梯度 整个沟道呈整个沟道呈楔形分布楔形分布当当vGSGS一定(一定(vGS GS V VT T )时,)时,vDSDS iD D 沟道电位梯度沟道电位梯度 当当vDSDS增加到使增加到使vGDGD= =V VT T 时,时,在紧靠漏极处出现预夹断。在紧靠漏极处出现预夹断。2. 工作原理工作原理(2)vDS对沟道的控制作用对沟道的控制作用在预夹断处:在预夹断处:vGDGD= =vGSGS- -vDS DS = =V VT T预夹断后,预夹断后,vDSDS 夹断区延长夹断区延长沟道电阻沟道电阻 iD D基本不变基本不变2. 工作原理工作原理(2)vDS对沟道的

30、控制作用对沟道的控制作用2. 工作原理工作原理(3) vDS和和vGS同时作用时同时作用时 vDSDS一定,一定,vGSGS变化时变化时 给定一个给定一个vGS GS ,就有一条不,就有一条不同的同的 iD D vDS DS 曲线。曲线。5.2.1 MOSFET放大电路放大电路3. 小信号模型分析小信号模型分析(1)模型)模型DQDIi gsmvg dDQiI gsmdvgi 0 0时时高频小信号模型高频小信号模型3. 小信号模型分析小信号模型分析解:例解:例5.2.25.2.2的直流分析已的直流分析已求得:求得: mA5 . 0DQ IV2GSQ VV75. 4DSQ VmS1 mS)12(

31、5 . 02 )(2TGSQnm VVKg(2)放大电路分析)放大电路分析(例(例5.2.5)s3. 小信号模型分析小信号模型分析(2)放大电路分析)放大电路分析(例(例5.2.5)dgsmoRg vv )1()(mgsgsmgsiRgRg vvvvRgRgAmdmio1 vvvg2g1i| RRR doRR siisiiososRRRAA vvvvvvvvs5.3.1 JFET的结构和工作原理的结构和工作原理1. 结构结构 2. 工作原理工作原理 vGS对沟道的控制作用对沟道的控制作用当当vGS0时时(以(以N沟道沟道JFET为例)为例) 当沟道夹断时,对应当沟道夹断时,对应的栅源电压的栅源

32、电压vGS称为称为夹断夹断电压电压VP ( 或或VGS(off) )。)。对于对于N沟道的沟道的JFET,VP 0。PN结反偏结反偏耗尽层加厚耗尽层加厚沟道变窄。沟道变窄。 vGS继续减小,沟道继续减小,沟道继续变窄。继续变窄。2. 工作原理工作原理(以(以N沟道沟道JFET为例)为例) vDS对沟道的控制作用对沟道的控制作用当当vGS=0时,时, vDS iD g、d间间PN结的反向结的反向电压增加,使靠近漏极电压增加,使靠近漏极处的耗尽层加宽,沟道处的耗尽层加宽,沟道变窄,从上至下呈楔形变窄,从上至下呈楔形分布。分布。 当当vDS增加到使增加到使vGD=VP 时,在紧靠漏时,在紧靠漏极处出

33、现预夹断。极处出现预夹断。此时此时vDS 夹断区延长夹断区延长沟道电阻沟道电阻 iD基本不变基本不变2. 工作原理工作原理(以(以N沟道沟道JFET为例)为例) vGS和和vDS同时作用时同时作用时当当VP vGS0 时,导电沟道更容易夹断,时,导电沟道更容易夹断,对于同样的对于同样的vDS , iD的值比的值比vGS=0时的值要小。时的值要小。在预夹断处在预夹断处vGD=vGS- -vDS =VP 5.3.2 JFET的特性曲线及参数的特性曲线及参数const.DSDGS)( vvfi2. 转移特性转移特性 const.GSDDS)( vvfi1. 输出特性输出特性 2PGSDSSD)1(V

34、Iiv (VPvGS0)5.3.3 JFET放大电路的小信号模型分析法放大电路的小信号模型分析法1. JFET小信号模型小信号模型(1)低频模型)低频模型6.1 模拟集成电路中的直流偏置技术模拟集成电路中的直流偏置技术6.3 差分式放大电路的传输特性差分式放大电路的传输特性6.4 集成电路运算放大器集成电路运算放大器6.2 差分式放大电路差分式放大电路6.1 模拟集成电路中的模拟集成电路中的直流偏置技术直流偏置技术6.1.1 BJT电流源电路电流源电路6.1.2 FET电流源电流源1. 镜像电流源镜像电流源2. 微电流源微电流源3. 高输出阻抗电流源高输出阻抗电流源4. 组合电流源组合电流源1

35、. MOSFET镜像电流源镜像电流源2. MOSFET多路电流源多路电流源3. JFET电流源电流源6.1.1 BJT电流源电路电流源电路1. 镜像电流源镜像电流源BE1BE2=VVE1E2= IIC1C2= IIT T1 1、T T2 2的参数全同的参数全同 即即12,ICEO1ICEO2 当当BJT的的较大时,基极电流较大时,基极电流IB可以忽略可以忽略 IoIC2IREF RVVRVVVEECCEEBECC)( 代表符号代表符号6.1.1 BJT电流源电路电流源电路4. 组合电流源组合电流源T1、R1 和和T4支路产生基准电流支路产生基准电流IREF1EB4BE1EECCREFRVVVV

36、I T1和和T2、T4和和T5构成镜像电流源构成镜像电流源T1和和T3,T4和和T6构成了微电流源构成了微电流源6.1.2 FET电流源电流源1. MOSFET镜像电流源镜像电流源当器件具有不同的宽长比时当器件具有不同的宽长比时RVVVIIIGSSSDDREFD2O REF1122O/ILWLWI ( =0=0)ro= rds2 MOSFET基本镜像电路流基本镜像电路流 6.1.2 FET电流源电流源1. MOSFET镜像电流源镜像电流源2T2GS22n2T2GS22n2D2)( )()/(VVKVVKLWI 用用T3代替代替R,T1T3特性相同,特性相同,且工作在放大区,当且工作在放大区,当

37、 =0时时,输出,输出电流为电流为 常用的镜像电流源常用的镜像电流源 6.1.2 FET电流源电流源2. MOSFET多路电流源多路电流源REF1122D2/ILWLWI REF1133D3/ILWLWI REF1144D4/ILWLWI 2T0GS0n0D0REF)( VVKII 6.2 差分式放大电路差分式放大电路6.2.1 差分式放大电路的一般结构差分式放大电路的一般结构6.2.2 射极耦合差分式放大电路射极耦合差分式放大电路6.2.3 源极耦合差分式放大电路源极耦合差分式放大电路6.2.1 差分式放大电路的一般结构差分式放大电路的一般结构2. 有关概念有关概念i2i1id=vvv 差模

38、信号差模信号)(21=i2i1icvvv 共模信号共模信号idod=vvv A差模电压增益差模电压增益icoc=vvv A共模电压增益共模电压增益icciddooo =vvvvvvvAA 总输出电压总输出电压其中其中ov 差模信号产生的输出差模信号产生的输出ov 共模信号产生的输出共模信号产生的输出共模抑制比共模抑制比反映抑制零漂能力的指标反映抑制零漂能力的指标cdCMR=vvAAK6.2.1 差分式放大电路的一般结构差分式放大电路的一般结构2. 有关概念有关概念根据根据2=idici1vvv 2=idici2vvv i2i1id=vvv )(21=i2i1icvvv 有有 共模信号相当于两个

39、输入共模信号相当于两个输入端信号中相同的部分端信号中相同的部分 差模信号相当于两个输入差模信号相当于两个输入端信号中不同的部分端信号中不同的部分 两输入端中的共模信号两输入端中的共模信号大小相等,相位相同;差模信大小相等,相位相同;差模信号大小相等,相位相反。号大小相等,相位相反。6.2.2 射极耦合差分式放大电路射极耦合差分式放大电路1. 电路组成及工作原理电路组成及工作原理6.2.2 射极耦合差分式放大电路射极耦合差分式放大电路1. 电路组成及工作原理电路组成及工作原理静态静态OCC2C121=IIII CE2CE1=VV CCV)V7 . 0(c2CCC RIV c2CRIEVIIICB

40、2B1 动态动态仅输入差模信号,仅输入差模信号, i2i1vv和和大小相等,相位相反。大小相等,相位相反。 O2O1vv和和大小相等,大小相等, 0O2O1o vvv信号被放大。信号被放大。相位相反。相位相反。1. 电路组成及工作原理电路组成及工作原理2. 抑制零点漂移原理抑制零点漂移原理 温度变化和电源电压波温度变化和电源电压波动,都将使集电极电流产动,都将使集电极电流产生变化。且变化趋势是相生变化。且变化趋势是相同的,同的, 其效果相当于在两个其效果相当于在两个输入端加入了共模信号。输入端加入了共模信号。 iC1 iC2 温度温度 iC1 iE1 iC2 iE2 这一过程类似于分压式射这一

41、过程类似于分压式射极偏置电路的温度稳定过程。极偏置电路的温度稳定过程。所以,即使电路处于单端输出所以,即使电路处于单端输出方式时,仍有较强的抑制零漂方式时,仍有较强的抑制零漂能力。能力。 vE (vB1、vB2不变)不变) vBE1和和 vBE2 iB1和和 iB1 2. 抑制零点漂移原理抑制零点漂移原理差分式放大电路对共模信号有很强抑制作用差分式放大电路对共模信号有很强抑制作用3. 主要指标计算主要指标计算(1)差模情况)差模情况 idod=vvvAi2i1o2o1vvvv 接入负载时接入负载时i1o122vv becrR beLcd)21|(=rRRA v以双倍的元器件换以双倍的元器件换取

42、抑制零漂的能力取抑制零漂的能力 双入、双出双入、双出3. 主要指标计算主要指标计算(1)差模情况)差模情况 双入、单出双入、单出 ido1d1=vvvAi1o12vvd21vA bec2rR 接入负载时接入负载时beLcd2)|(=rRRA v3. 主要指标计算主要指标计算(1)差模情况)差模情况 单端输入单端输入eorr 等效于双端输入等效于双端输入 指标计算与双指标计算与双端输入相同。端输入相同。3. 主要指标计算主要指标计算(2)共模情况)共模情况 双端输出双端输出 共模信号的输入使两管共模信号的输入使两管集电极电压有相同的变化。集电极电压有相同的变化。所以所以0oc2oc1oc vvv

43、0icocc vvvA共模增益共模增益 单端输出单端输出icoc1c1vvv A抑制零漂能力增强抑制零漂能力增强icoc2vv obec2)1(rrR oc2rR or c1vA3. 主要指标计算主要指标计算(2)共模情况)共模情况7.1 反馈的基本概念与分类反馈的基本概念与分类7.3 负反馈放大电路增益的一般表达式负反馈放大电路增益的一般表达式7.4 负反馈对放大电路性能的影响负反馈对放大电路性能的影响7.5 深度负反馈条件下的近似计算深度负反馈条件下的近似计算7.2 负反馈放大电路的四种组态负反馈放大电路的四种组态7.1 反馈的基本概念与分类反馈的基本概念与分类7.1.2 直流反馈与交流反馈直流反馈与交流反馈7.1.3 正反馈与负反馈正反馈与负反馈7.1.4 串联

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论