反比例函数的图象与性质_第1页
反比例函数的图象与性质_第2页
反比例函数的图象与性质_第3页
反比例函数的图象与性质_第4页
反比例函数的图象与性质_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、反比例函数的图象与性质海伦市共荣中学 朱海臣教学目标 1知识与技能 (1)进一步熟悉作函数图象的步骤,会作反比例函数的图象,并由图像归纳概括出反比例函数的性质。 (2)体会函数的三种表示方法及相互转换,对函数进行认识上的整合,提升学生对数形结合思想的认识。 2过程与方法 通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征培养与发展学生的探究能力,提高从图形中提取有效信息的能力,训练观察与分析、归纳与概括的能力。 3情感、态度与价值观 由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图

2、象的直观教学激发学习兴趣,增强学生对数学习的好奇心与求知欲.教学重点:画反比例函数的图象;并从函数图象中获取信息,探索并研究反比例函数的主要性质.教学难点:反比例函数的图象特点及性质的探究. 教学过程:一、提出问题 同学们还记得一次函数y=kx+b(k0)的图象及其性质吗?那么反比例函数的又会是什么样子呢?你想知道吗?引出课题(板书课题)二、探索、研究 -揭示反比例函数的特点活动一(1) 例2 画出反比例函数y=与y=-的图象。引导学生思考:画一个函数的图象,应该按哪几步完成?列表:自变量取哪些值?x0,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,这样y就只差一个符号,可以减

3、少计算量。描点:由表格得出在直角坐标系中所需描出的点的坐标,并描出对应的点。连线:用光滑的曲线按自变量从小到大的顺序把描出的点连接起来.(2)分析、比较y=与y=-的图象它们都由两条曲线组成,并且随着x的不断增大(或缩小),曲线越来越接近x轴(或y轴)但不会与x轴、y轴相交。反比例函数的图象属于双曲线活动二 在给出的平面直角坐标系中画出反比例函数y=与y=-的图象。(1)由学生独立完成。(2)关注学生:能否按步骤画出图象;能否利用y=与y=-的关系画出函数的图象.活动三 观察函数y=与y=-以及y=与y=-的图象问题(1)你能发现它们的共同特征及不同点吗? (2)每个函数的图象分别位于哪几个象

4、限? (3)在每一个象限内,y随x的变化如何变化?让每位同学认真思考后,分小组讨论。师参与到小组中,积极引导。分析归纳反比例函数的性质(1)反比例函数y=(k为常数,k0)的图象是双曲线;(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y随x值的增大而减小;(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y随x值的增大而增大。三 巩固提高1若函数与的图象交于第一、三象限,则m的取值范围是 2反比例函数,当x2时,y ;当x2时;y的取值范围是 ; 当x2时;y的取值范围是 3 已知反比例函数,当时,y随x的增大而增大,求函数关系式。四 课堂总结

5、提高认识问题:本节课你学习了哪些知识?在知识运用过程中需要注意什么?你有什么收获?五 推荐作业教材43页1题、44页2题。板书设计反比例函数的图象与性质一、反比例函数y=与y=-的图象和反比例函数y=与y=-的图象二、性质:反比例函数 y=(k为常数,k0)的图象是双曲线;(1)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y随x值的增大而减小;(2)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y随x值的增大而增大。课后反思:画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。反比例函数(k0)自变量的取值范围是x0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。连线时要告诉学生用平滑的曲线连接,不能用折线连接。教学时,老师应带着学生一起画,注意引导,及时纠错。在探究反比例函数的性质时,可结合正比例函数ykx(k0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论