




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考数学大题突破训练(九)1、已知函数。()求的最小正周期:()求在区间上的最大值和最小值。2、某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。()求当天商品不进货的概率;()记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。3、如图,在四棱锥中,平面,底面是菱形,.()求证:平面()若求与所成角的余弦值;()当平面与平面垂直时,求的长.4、已知函数(I)设函数,求的单调区间与极值; (
2、)设,解关于的方程 ()试比较与的大小.5、如图7,椭圆的离心率为,轴被曲线 截得的线段长等于的长半轴长。()求,的方程;()设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.(i)证明:;(ii)记MAB,MDE的面积分别是.问:是否存在直线,使得=?请说明理由。6、设为非零实数,(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;(II)设,求数列的前n项和高考数学大题突破训练(十)1、已知函数(1)求的最小正周期和最小值;(2)已知,求证:2、本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过
3、两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。()求出甲、乙所付租车费用相同的概率;()求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;3、是正方形的中心,平面,且()求异面直线AC与A1B1所成角的余弦值;()求二面角的正弦值;()设为棱的中点,点在平面内,且平面,求线段的长4、已知函数。()求的单调区间;()若对于任意的,都有,求的取值范围。5、已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两
4、点.(I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.6、已知数列与满足:, ,且()求的值;()设,证明:是等比数列;(III)设证明:高考数学大题突破训练(十一)1、在中,角所对的边分别为,且满足.(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小2、工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟。如果前一个人10分钟内不能完成任务则撤出,再派下一个人,现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为,假设互不相等,且假定各人能否完成任务的事件相互独立。()如果按甲最先、乙次
5、之、丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?()若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目X的分布列和均值(数学期望)EX;()假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小。3、在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作,再令,n1.()求数列的通项公式;()设,求数列的前n项和.4、如图,在直三棱柱AB-A1B1C1中 BAC=90°,AB=AC=AA1 =1D是棱CC1上的一点,
6、P是AD的延长线与A1C1的延长线的交点,且PB1平面BDA(I)求证:CD=C1D:(II)求二面角A-A1D-B的平面角的余弦值;()求点C到平面B1DP的距离5、已知,函数(的图像连续不断)()求的单调区间;()当时,证明:存在,使;()若存在均属于区间的,且,使,证明6、椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P直线AC与直线BD交于点Q (I)当|CD | = 时,求直线l的方程; (II)当点P异于A、B两点时,求证: 为定值。 高考数学大题突破训练(十二)、设,满足,求函数在上的最大值和最小值.2、根据以往统计资料
7、,某地车主购买甲种保险的概率为05,购买乙种保险但不购买甲种保险的概率为03,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;()X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。 3、如图,四边形ABCD为正方形,PD平面ABCD,PDQA,QA=AB=PD (I)证明:平面PQC平面DCQ; (II)求二面角QBPC的余弦值4、已知a,b是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致(1)设,若函数和在区间上单调性一致,求实数b的取值范围;(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b
8、|的最大值5、设数列满足且()求的通项公式;()设6、如图,椭圆的中心为原点,离心率,一条准线的方程为 ()求该椭圆的标准方程; ()设动点满足:,其中是椭圆上的点,直线与的斜率之积为,问:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由高考数学大题突破训练(九)参考答案1、解:()因为所以的最小正周期为()因为于是,当时,取得最大值2;当取得最小值1.2、解析:(I)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量1件”)=。(II)由题意知,的可能取值为2,3.;故的分布列为23的数学期望为。3、证明:()因为四边形ABCD是菱形,所以ACB
9、D.又因为PA平面ABCD.所以PABD.所以BD平面PAC.()设ACBD=O.因为BAD=60°,PA=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0).所以设PB与AC所成角为,则.()由()知设P(0,t)(t>0),则设平面PBC的法向量,则所以令则所以同理,平面PDC的法向量因为平面PCB平面PDC,所以=0,即解得所以PA=4、解析:(1),令 所以是其极小值点,极小值为。是其极大值点,极大值为(2);由时方程无解时方程的根为(3),5、解析:(I)由题意知,从而,
10、又,解得。故,的方程分别为。(II)(i)由题意知,直线的斜率存在,设为,则直线的方程为.由得,设,则是上述方程的两个实根,于是。又点的坐标为,所以故,即。(ii)设直线的斜率为,则直线的方程为,由解得或,则点的坐标为又直线的斜率为 ,同理可得点B的坐标为.于是由得,解得或,则点的坐标为;又直线的斜率为,同理可得点的坐标于是因此由题意知,解得 或。又由点的坐标可知,所以故满足条件的直线存在,且有两条,其方程分别为和。6、解析:(1) 因为为常数,所以是以为首项,为公比的等比数列。(2)(2)(1)高考数学大题突破训练(十)参考答案1、 解析:(2)2、解析:(1)所付费用相同即为元。设付0元为
11、,付2元为,付4元为则所付费用相同的概率为(2)设甲,乙两个所付的费用之和为,可为分布列3、本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B为坐标原点. 依题意得 (I)解:易得, 于是 所以异面直线AC与A1B1所成角的余弦值为 (II)解:易知 设平面AA1C1的法向量, 则即 不妨令可得, 同样地,设平面A1B1C1的法向量, 则即不妨令,可得于是从而所以二面角AA1C1B的正弦值为 (III)解:由N为棱B1C1的中点,得设M(a,b
12、,0),则由平面A1B1C1,得即解得故因此,所以线段BM的长为方法二:(I)解:由于AC/A1C1,故是异面直线AC与A1B1所成的角.因为平面AA1B1B,又H为正方形AA1B1B的中心,可得因此所以异面直线AC与A1B1所成角的余弦值为(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以,过点A作于点R,连接B1R,于是,故为二面角AA1C1B1的平面角.在中,连接AB1,在中,从而所以二面角AA1C1B1的正弦值为(III)解:因为平面A1B1C1,所以取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND/C1H且.又平面AA1B1B,
13、所以平面AA1B1B,故又所以平面MND,连接MD并延长交A1B1于点E,则由得,延长EM交AB于点F,可得连接NE.在中,所以可得连接BM,在中,4、解:()令,得.当k>0时,的情况如下x()(,k)k+00+0所以,的单调递减区间是()和;单高层区间是当k<0时,的情况如下x()(,k)k0+00所以,的单调递减区间是()和;单高层区间是()当k>0时,因为,所以不会有当k<0时,由()知在(0,+)上的最大值是所以等价于解得.故当时,k的取值范围是5、解:()由已知得所以所以椭圆G的焦点坐标为离心率为()由题意知,.当时,切线l的方程,点A、B的坐标分别为此时
14、当m=1时,同理可得当时,设切线l的方程为由设A、B两点的坐标分别为,则又由l与圆所以由于当时,所以.因为且当时,|AB|=2,所以|AB|的最大值为2.6、(I)解:由 可得又(II)证明:对任意 ,得将代入,可得 即又 因此是等比数列.(III)证明:由(II)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,对于n=1,不等式显然成立.所以,对任意高考数学大题突破训练(十一)参考答案1、解析:(I)由正弦定理得因为所以(II)由(I)知于是 取最大值2综上所述,的最大值为2,此时2、解:()无论以怎样的顺序派出人员,任务不能被完成的概率都是,所以任
15、务能被完成的概率与三个人被派出的先后顺序无关,并等于()当依次派出的三个人各自完成任务的概率分别为时,随机变量X的分布列为X123P所需派出的人员数目的均值(数学期望)EX是EX=+=()(方法一)由()的结论知,当甲最先、乙次之、丙最后的顺序派人时,EX=根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值。下面证明:对于的任意排列,都有()事实上,即()成立。(方法二)()可将()中所求的EX改写为,若交换前两人的派出顺序,则变为。由此可见,当时,交换前两人的派出顺序可减少均值。()也可将()中所求的EX改写为,若交换后两人的派出顺序,则变为。由此可见,若保持第一个派出的人
16、选不变,当时,交换后两人的派出顺序也可减少均值。综合()()可知,当=时,EX达到最小。即完成任务概率大的人优先派出,可减少所需派出人员数目的均值,这一结论是合乎常理的。3、解:()设构成等比数列,其中,则 ×并利用,得()由题意和()中计算结果,知另一方面,利用得所以4、解析:(1)连接交于,又为的中点,中点,,D为的中点。(2)由题意,过B 作,连接,则,为二面角的平面角。在中,,则(3)因为,所以,在中,5、(I)解:, 令 当x变化时,的变化情况如下表:+0-极大值 所以,的单调递增区间是的单调递减区间是 (II)证明:当 由(I)知在(0,2)内单调递增, 在内单调递减.令
17、由于在(0,2)内单调递增,故取所以存在即存在(说明:的取法不唯一,只要满足即可)(III)证明:由及(I)的结论知,从而上的最小值为又由,知故从而6、解:()因椭圆的焦点在y轴上,设椭圆的标准方程为,由已知得,所以,则椭圆方程为直线l垂直于x轴时与题意不符设直线l的方程为,联立得,设,则,由已知得,解得,所以直线l的方程为或()直线l垂直于x轴时与题意不符设直线l的方程为(且),所以P点的坐标为设,由()知,直线AC的方程为:,直线BD的方程为:,方法一:联立方程设,解得,不妨设,则,因此Q点的坐标为,又,故为定值方法二:联立方程消去y得,因为,所以与异号又,与异号,与同号,解得因此Q点的坐
18、标为,又,故为定值高考数学大题突破训练(十二)参考答案1、解:由因此当为增函数,当为减函数,所以又因为故上的最小值为2、解:记A表示事件:该地的1位车主购买甲种保险; B表示事件:该地的1位车主购买乙种保险但不购买甲种保险; C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种; D表示事件:该地的1位车主甲、乙两种保险都不购买; (I)3分 6分 (II),即X服从二项分布,10分所以期望12分3、如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz. (I)依题意有Q(1,1,0),C(0,0,1),P(0,2,0).则所以即PQDQ,PQDC.故PQ平面DCQ.又PQ平面PQC,所以平面PQC平面DCQ. 6分 (II)依题意有B(1,0,1),设是平面PBC的法向量,则因此可取设m是平面PBQ的法向量,则可取故二面角QBPC的余弦值为 12分4、答案:(1) 因为函数和在区间上单调性一致,所以,即即实数b的取值范围是(2) 由若,则由,和在区间上不是单调性一致,所以.;又.所以要使,只有,取,当时, 因此当时,因为,函数和在区间(b,a)上单调性一致,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年陇南地区成县数学三上期末学业质量监测试题含解析
- 2025-2026学年焦作市沁阳市数学三上期末模拟试题含解析
- 2025-2026学年江西省吉安市永丰县三年级数学第一学期期末质量检测试题含解析
- 2025-2026学年江苏省连云港市沙河子园艺场小学三上数学期末考试试题含解析
- 七年级上政治知识点复习课件
- 2025年卫生资格考试核心资料试题及答案
- 日本文化对中华文化的反思试题及答案
- 医疗环境与职业安全的试题及答案
- 全面掌握的执业医师考试试题及答案
- 2025自考行政管理考情分析试题及答案
- Unit6Craftsmanship+Listening+an课件-中职高教版(2021)基础模块2
- 医院安全风险分级管控清单
- HSK六级真题与答案下载(第一套)
- 铁总物资〔2015〕117号:铁路建设项目甲供物资目录
- 二年级期中家长会课件PPT
- 工资条(标准模版)
- 2023年江西南昌高新区社区工作者招聘54人(共500题含答案解析)笔试历年难、易错考点试题含答案附详解
- 四川省中小流域暴雨洪水计算表格(尾矿库洪水计算)
- 教育部中等职业学校教学大纲
- 中药斗谱排列方法 斗谱的编排原则
- 《海底两万里》1-47章练习题(含答案)
评论
0/150
提交评论