《基本不等式》典型例题_第1页
《基本不等式》典型例题_第2页
《基本不等式》典型例题_第3页
《基本不等式》典型例题_第4页
《基本不等式》典型例题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档高中数学必修五典题精讲8欢迎下载典题精讲 例1 (1)已知0v xv -,求函数y=x(1-3x)的最大值;3(2)求函数y=x+ 的值域.x思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x的系数变成互为相反数;(2)中,未指出x>0,因而不能直接使用基本不等式,需分x>0与x<0讨论.(1)解法一:-.-0<x< - ,1-3x >0.3y=x(1-3x)=1 3x(1-3x) w1 3x-(1一3x) 2=,当且仅当 3x=1-3x ,即 x=时,等号成332126立.x=1时,函数取得最大值 .612解法二:.1 0<

2、;x< - ,- -x >0.331x Q x 11.y=x(1-3x)=3x( -x) <3 3 2=,当且仅当 x= - -x,即*=一时,等号成立.,x=l时,函数取得最大值 -.612(2)解:当x>0时,由基本不等式,得1- 1y=x+ 一或 Jx?一 =2,x x当且仅当x=1时,等号成立当 x<0 时,y=x+ =- (-x)+ -.x( x)-x >0, .,.(-x)+ 立 当且仅当-x=,即x=-1时,等号成立.(x)xy=x+ <2.x综上,可知函数y=x+ 1的值域为(-8,-2 U 2,+丐.x绿色通道:利用基本不等式求积的最

3、大值,关键是构造和为定值,为使基本不等式成立创造条件, 同时要注意等号成立的条件是否具备.变式训练1当x>-1时,求f(x)=x+ -的最小值.x 1思路分析:x>-1x+1 > 0,变x=x+1-1时x+1与的积为常数.x 1解:x> -1,x+1 >0.,11,八八 1,f(x)=x+ =x+1 +1 或 (x 1)?-1=1.x 1 x 1. (x 1)当且仅当x+1= ,即x=0时,取得等号.x 1 f(x) min=1.、 心 ,x43x23变式训练2求函数y= -一/一3的最小值.x2 1思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而

4、且利用前面求最值的方 法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开 解:令 t=x 2+1,则 t * 且 x2=t-1.x4 3x2 3 _(t 1)2 3(t 1) 3 t2 t 11 1y2 t - I.x 1ttt111.t H,t+ -或jt?-=2,当且仅当t=-,即t=1时,等号成立.t' tt当x=0时,函数取得最小值 3.例2已知x>0,y >0,且1+9=1,求x+y的最小值. x y思路分析:要求x+y的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的 变形,下面给出三种解法,请仔细体会.解法一:利用1的

5、代换”,1+9=1,19y9xx+y=(x+y) (- + )=10+yxyxy1.- x>0,y >0,x9x一身yy?9x=6 :x . y当且仅当y 9x,即y=3x时,取等号 x y又 1+ 9 =1, x=4,y=12. x y当x=4,y=12时,x+y取得最小值16.解法二:由 1+ 9 =1,得 x= y.x yy 91.- x>0,y >0, y>9.y y 9 999x+y= +y=y+ =y+1=(y-9)+ +10.y 9 y 9 y 9y 9, - y>9, . . y-9 >0.(y_ 99) ?=6.y 9当且仅当y-9=

6、 9,即y=12时,取得等号,此时 x=4.,当x=4,y=12时,x+y取得最小值16.y 9解法三:由1+9=1,得y+9x=xy, x y . (x-1)(y-9)=9.x+y=10+(x-1)+(y-9):0+2 .、,'(x 1)( y 9) =16,当且仅当x-1=y-9时取得等号.又1 + 9=1, x yx=4,y=12.,当x=4,y=12时,x+y取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换

7、的变量的范围对另外一个变量的范围的影响黑色陷阱:本题容易犯这样的错误:1+9 段;-9 ,即6=司,.1. Jxy 壬.x y : xy xy.x+y或Txy或X6=12.,x+y的最/、值是 12.1 9产生不同结果的原因是不等式等号成立的条件是 1=2,不等式 等号成立的条件是 x=y.在同x y一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.a b变式训练 已知正数a,b,x,y 满足a+b=10, =1, x+y的最小值为18,求a,b的值.x y思路分析:本题属于1”的代换问题.ab、 bxay, “ bxay斛:x+y=(x+y)( 尸a+

8、 +b=10+ .xy yx y xx,y >0,a,b >0, x+y/0+2 Jab =18, IP Tab =4.又 a+b=10,a2,a 8,或b 8 b 2.例 3 求 f(x)=3+lgx+4的最小值(0v xv 1).lg x思路分析:.,0<x<1,.lgx <0, <0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法lg x是加上负号变正数.解:0V xv 1, lgx V 0, -4 V 0.- -4- > 0.lg x lg x(-lgx)+(-P2 1( lg x)( ) =4.lg xlgxlgx+ 04

9、. 1. f(x)=3+lgx+<3-4=-1.lg xlg x当且仅当lgx= , IP x= 工时取得等号lg x 100则有 f(x)=3+lgx+ (0 <x<1)的最小值为-1.lg x黑色陷阱:本题容易忽略0vxv1这一个条件.变式训练1已知x< 5 ,求函数y=4x-2+ - 的最大值.44x 5思路分析:求和的最值,应凑积为定值.要注意条件xv 5 ,则4x-5 V 0.4解:xv 5 ,4x-5 < 0.4y=4x-5+ -+3=- (5-4x)+ -+34x 55 4x一 1W2 (5 4x) ?+3=-2+3=1.5 4x当且仅当5-4x=

10、1一 ,即x=1时等号成立.5 4x所以当x=1时,函数的最大值是 1.y=x+ 8- 的最大值. 2x 3 3 .一变式训练2当xv 3时,求函数2思路分析:本题是求两个式子和的最大值,但是x -8 并不是定值,也不能保证是正值,所以,必2x 3须使用一些技巧对原式变形 .可以变为y=1 (2x-3) +8+3=- (32x 8) +9,再 22x 3 223 2x 2求最值.到 183/ 3 2x 8、3斛:y= (2x-3 ) + =- ( ) + ,22x 3 223 2x 2当 xv 3时,3-2x >0,28,即x=- 1时取等号 3 2x23 2x 8 c '3 2

11、*小 83 2x >2,1?=4,当且仅当23 2x .23 2x2一一 3于te y W4+ =2例4如图3-4-1 ,5 5一,故函数有最大值 一.22一面可利用原有的墙, 其他各面用钢筋网动物园要围成相同的长方形虎笼四间,围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢 筋总长度最小?思路分析:设每间虎笼长为 x m,宽为y m,则(1)是在4x+6y=36的前提下求xy的最大值;而(2)则是在xy=24的前提下来求4x+6y的最小值.解:(1)设

12、每间虎笼长为 x m ,宽为y m,则由条件,知4x+6y=36 ,即2x+3y=18.设每间虎笼的面积为 S,则S=xy.方法一:由于 2x+3y 或 J2X3y =2 J6xy,2 '6xy W8,得 xy <27 ,即 SW27 . 22当且仅当2x=3y时等号成立.,2x 2y, x 4.5, 由 y, 解得,2x 3y 18, y 3.故每间虎笼长为4.5 m ,宽为3 m时,可使面积最大.方法二:由 2x+3y=18,得 x=9 y. 2 x>0,0V y< 6.S=xy=(9- 3y)y= 3 (6-y)y. 220<y<6,6-y >

13、0.,S<3 (6 y) y】2=j7. 222当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使面积最大 (2)由条件知S=xy=24.设钢筋网总长为1,则l=4x+6y.方法一 :.2x+3y 或 q2x?3y =2 v6xy=24,. l=4x+6y=2(2x+3y) N8,当且仅当 2x=3y 时,等号成立.,2x 3y,丘/口 x 6, 由 y,解得 , xy 24, y 4.故每间虎笼长6 m,宽4 m时,可使钢筋网总长最小.方法二:由 xy=24 ,得 x= 24 .y1. l=4x+6y= 96+6y=6( 16+y) 6X

14、2 1 y =48,当且仅当 16 =y,即 y=4 时,等号成立,此时 x=6. y y. yy故每间虎笼长6 m,宽4 m时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1) x,y都是正数;(2)积xy (或x+y)为定值;(3) x与y必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论变式训练某工厂拟建一座平面图为矩形且面积为200平方米的三级污水处理池 (平面图如图3-4-2所示),由于地形限制,长、宽都不能超过 16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米 248元,池底建造单价为每平方米80元,池壁的厚度

15、忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数 的单调性进行求解.解:设污水处理池的长为x米,则宽为 变米(0 VX司6,0 V30 46),12.5土司6.XX于是总造价 Q(x)=400(2x+2 X-200 )+248 X2X-200+80 X200.XX324324=800(x+ )+16 000 23800X2 X?+16 000=44 800,X; x当且仅当 x=324 (x >0),即 x=18 时等号成立,而 1812.5,16 , .,.Q(x) >44 8

16、00.x下面研究Q(x)在12.5,16 上的单调性.对任意 12.5 虫1 v X2司6,则 X2-x 1>0,x 1X2< 162< 324.1 一)1 X1八 八1Q(X2)-Q(x 1)=800 (X2-X1)+324( 一X2=800 x(X2 X1)(X1X2324) < 0,X1X2Q(X2) >Q(X1).Q(x)在12.5,16 上是减函数.Q(x) *(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论