版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 辅导教师:刘老师中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,各地命题设置上,选择题的数目稳定在10题左右,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应
2、该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础.例1 方程的解是()Ax=±1Bx=1Cx=1Dx=0对应训练1某单位要组织一次篮球联赛,赛制为单循环形式(每两
3、队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A7队B6队C5队D4队考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好.例2 已知a、b、c、d都是正实数,且 ,给出下列四个不等式:; ;。其中不等式正确的是()AB C D对应训练2如图,平面直角坐标系中,O的半径长为1,点P(a,0),P的半径长为2,把P向左平移,当P与O相切时,a的值为()A3 B1C1,D±1
4、,±3考点三:筛选法(也叫排除法、淘汰法)分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.例3 方程(k-1)x2-x+=0有两个实数根,则k的取值范围是()Ak1Bk1CkDk1对应训练3如图,若点M是x轴正半轴上任意一点,过点M作PQy轴,分别交函数y= (x0)和y=(x0)的图象于点P和Q,连接OP和OQ则下列结论正确的是()APOQ不可能等于90&
5、#176;B C这两个函数的图象一定关于x轴对称DPOQ的面积是(|k1|+|k2|)考点四:逆推代入法将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.例4下列各点中在反比例函数y=的图象上的是()A(-2,-3)B(-3,2)C(3,-2D(6,-1)对应训练4从2,1,2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过第三象限的概率是()ABCD1考点五:直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值
6、范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例5已知二次函数y=ax2+bx+c(a0)的图象如图所示,当-5x0时,下列说法正确的是()A有最小值-5、最大值0 B有最小值-3、最大值6C有最小值0、最大值6 D有最小值2、最大值6对应训练5如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()Ak=nBh=mCkn Dh0,k0考点六:特征分析法对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值
7、特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法例6 下列选项中,阴影部分面积最小的是()A BC D对应训练6如图,点A是双曲线y=在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点若四边形ABCD的面积是8,则k的值为()A1B1 C2D2考点七:动手操作法与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.例7 折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更
8、是培养智力的一种手段在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图的过程折叠后展开,请选择所得到的数学结论()A角的平分线上的点到角的两边的距离相等B在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C直角三角形斜边上的中线等于斜边的一半D如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形对应训练7将一张正方形纸片按图、图所示的方式依次对折后,再沿图中的虚线剪裁,最后将图中的纸片打开铺平,所得到的图案是()A BC D四、中考真题演练1一个圆锥的三视图如图所示,则此圆锥的底面积为()A30cm2B25cm
9、2C50cm2D100cm22O1和O2的半径分别是3cm和4cm,如果O1O2=7cm,则这两圆的位置关系是()A内含B相交C外切D外离3)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A2a2B3a2 C4a2D 5a24如图,A点在半径为2的O上,过线段OA上的一点P作直线,与O过A点的切线交于点B,且APB=60°,设OP=x,则PAB的面积y关于x的函数图象大致是()A BC D5有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩
10、余部分作废料处理,若使废料最少,则正整数x,y应分别为()Ax=1,y=3Bx=3,y=2Cx=4,y=1 D x=2,y=36有一道题目:已知一次函数y=2x+b,其中b0,与这段描述相符的函数图象可能是()A BC D 7如图,点A是反比例函数y=(x0)的图象上任意一点,ABx轴交反比例函数y=的图象于点B,以AB为边作ABCD,其中C、D在x轴上,则SABCD为()A2B3C4D58若ab0,则下列不等式不一定成立的是()AacbcBa+cb+cCDabb29已知x2+16x+k是完全平方式,则常数k等于()A64B48C32D1610下列计算正确的是()AB(a+b)2=a2+b2C
11、(2a)3=6a3 D(x2)=2x11抛物线y=(x1)2+2的顶点坐标是()A(1,2)B(1,2)C(1,2)D(1,2)12在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是()A甲队B乙队C丙队D丁队13为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A甲秧苗出苗更整齐B乙秧苗出苗更整齐C甲、乙出苗一样整齐D无法确定14如图是2012年伦敦奥运会吉祥物,某校在
12、五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31这组数据的中位数是()A27B29C30D3115如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A正三角形B正方形 C正五边 D正六边形16如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()Aa户最长Bb户最长Cc户最长 D三户一样长17平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋
13、转30°得OB,则点B的坐标为()A(1,)B(1,)C(O,2)D(2,0)18在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A BC D19已知,则的值是()ABCD20下列几何体中,俯视图相同的是()ABCD21两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()A两个外离的圆B两个相交的圆C两个外切的圆D两个内切的圆22如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上如果1=25°,那么2的度数是()A30°B25°C20 D 15
14、76;23如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C若点C的坐标为(m1,2n),则m与n的关系为()Am+2n=1Bm2n=1 C2nm=1 Dn2m=124)如图,已知AD是ABC的BC边上的高,下列能使ABDACD的条件是()AAB=ACBBAC=90°CBD=AC DB=45°25用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A一组邻边相等的四边形是菱形 B四边相等的四边形是菱形C对角线互相垂直的平行四边形是菱形D每条
15、对角线平分一组对角的平行四边形是菱形26如图,AB是O的直径,若BAC=35°,则ADC=()A35°B55° C70°D110°27下列四个命题:等边三角形是中心对称图形;在同圆或等圆中,相等的弦所对的圆周角相等;三角形有且只有一个外接圆;垂直于弦的直径平分弦所对的两条弧其中真命题的个数有()A1个B2个C3个D4个28以下说法正确的有()正八边形的每个内角都是135°与是同类二次根式长度等于半径的弦所对的圆周角为30°反比例函数y=,当x0时,y随x的增大而增大A1个B2个C3个D4个29如图,一次函数y=x+3的图象与
16、x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE有下列四个结论:CEF与DEF的面积相等;AOBFOE;DCECDF;AC=BD 其中正确的结论是()ABCD中考数学专题讲座二:新概念型问题一、中考专题诠释所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新概念型专题”关键要
17、把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移三、中考典例剖析考点一:规律题型中的新概念例1 我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差如2,4,6,8,10就是一个等差数列,它的公差为2如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列例如数列1,3,9,19,33,它的后一个数与前一个数的差组成的新数列是2,6,10,14,这
18、是一个公差为4的等差数列,所以,数列1,3,9,19,33,是一个二阶等差数列那么,请问二阶等差数列1,3,7,13,的第五个数应是 21对应训练1若x是不等于1的实数,我们把 称为x的差倒数,如2的差倒数是 =-1,-1的差倒数为 = ,现已知x1=- ,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,依次类推,则x2012= 考点二:运算题型中的新概念例2将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,概念=ad-bc,上述记号就叫做2阶行列式若=8,则x= 2对应训练2若(x1,y1)(x2,y2)=x1x2+y1y2,则(4,5)(6,8)= 考点三:探索题型
19、中的新概念例3 如图,A、B是O上的两个定点,P是O上的动点(P不与A、B重合)、我们称APB是O上关于点A、B的滑动角(1)已知APB是O上关于点A、B的滑动角,若AB是O的直径,则APB= °;若O的半径是1,AB=,求APB的度数;(2)已知O2是O1外一点,以O2为圆心作一个圆与O1相交于A、B两点,APB是O1上关于点A、B的滑动角,直线PA、PB分别交O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索APB与MAN、ANB之间的数量关系对应训练3如果一条抛物线y=ax2+bx+c(a0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条
20、抛物线的“抛物线三角形”(1)“抛物线三角形”一定是 等腰三角形;(2)若抛物线y=-x2+bx(b0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,OAB是抛物线y=-x2+bx(b0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由考点四:开放题型中的新概念例4 在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下概念:若|x1-x2|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|y1-y2|,则点P1与点P2的“非常距离
21、”为|y1-y2|例如:点P1(1,2),点P2(3,5),因为|1-3|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点)(1)已知点A(-,0),B为y轴上的一个动点,若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”
22、的最小值及相应的点E与点C的坐标对应训练4请你规定一种适合任意非零实数a,b的新运算“ab”,使得下列算式成立:12=21=3,(-3)(-4)=(-4)(-3)=- ,(-3)5=5(-3)=- ,你规定的新运算ab= (用a,b的一个代数式表示)考点五:阅读材料题型中的新概念例5 平面上有两条直线AB、CD相交于点O,且BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q0)的点的“距离坐标”为(0,q);
23、(3)到直线AB、CD的距离分别为p,q(p0,q0)的点的“距离坐标”为(p,q)设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):满足m=1,且n=0的点M的集合;满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式(说明:图中OI长为一个单位长)对应训练5在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:f(x,y)=(y,x)如f(2,3)=(3,2);g(x,y)=(-x,-y),如g(2,3)=(-2,-3)按照以上变换有:f(g(2,3)=f
24、(-2,-3)=(-3,-2),那么g(f(-6,7)等于()A(7,6)B(7,-6)C(-7,6)D(-7,-6)四、中考真题演练一、选择题1概念:f(a,b)=(b,a),g(m,n)=(-m,-n)例如f(2,3)=(3,2),g(-1,-4)=(1,4)则gf(-5,6)等于()A(-6,5)B(-5,-6)C(6,-5)D(-5,6)2文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入 ,则输出的结果为()A5B6C7D83小明用棋子摆放图形来研究数的规律图1中棋子围城三角形,其棵数3,6,9,12,称为三角形数类似地,图2中的4,8,1
25、2,16,称为正方形数下列数中既是三角形数又是正方形数的是()A2010B2012C2014D2016二、填空题4规定用符号m表示一个实数m的整数部分,例如:=0,3.14=3按此规定的值为 5概念:平面内的直线与相交于点O,对于该平面内任意一点M,点M到直线、的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述概念,距离坐标为(2,3)的点的个数是()A2B1C4D36新概念:a,b为一次函数y=ax+b(a0,a,b为实数)的“关联数”若“关联数”1,m-2的一次函数是正比例函数,则关于x的方程 +=1的解为 x=37)如图,ABC是正三角形,曲线CDEF叫做正三角
26、形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是 48 在ABC中,P是AB上的动点(P异于A、B),过点P的直线截ABC,使截得的三角形与ABC相似,我们不妨称这种直线为过点P的ABC的相似线,简记为P(lx)(x为自然数)(1)如图,A=90°,B=C,当BP=2PA时,P(l1)、P(l2)都是过点P的ABC的相似线(其中l1BC,l2AC),此外,还有 1条;(2)如图,C=90°,B=30°,当 = 时,P(lx)截得的三角形面积为ABC面积的三、解答题9如图,概念:在直角三角形ABC中,锐角的邻边与对边
27、的比叫做角的余切,记作ctan,即ctan= = ,根据上述角的余切概念,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=,其中A为锐角,试求ctanA的值10对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2)(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫
28、做P0到直线y=ax+b的直角距离试求点M(2,1)到直线y=x+2的直角距离11如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB如果点P在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围12如图,概念:若双曲线y=(k0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=(k0)的对径(1)求双曲线y= 的对径(2)若双曲线y=(k0)的对径是10,求k的值(3)仿照上述概念,概念双曲线y= (k0)的
29、对径13联想三角形外心的概念,我们可引入如下概念概念:到三角形的两个顶点距离相等的点,叫做此三角形的准外心举例:如图1,若PA=PB,则点P为ABC的准外心应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求APB的度数探究:已知ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长14将ABC绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得ABC,即如图,我们将这种变换记为,n(1)如图,对ABC作变换60°,得ABC,则SABC:SABC= 3;直线BC与直线BC所夹的锐角为 60度;(2)如图,ABC中,BAC=30
30、76;,ACB=90°,对ABC 作变换,n得AB'C',使点B、C、C在同一直线上,且四边形ABB'C'为矩形,求和n的值;(3)如图,ABC中,AB=AC,BAC=36°,BC=l,对ABC作变换,n得ABC,使点B、C、B在同一直线上,且四边形ABB'C'为平行四边形,求和n的值15)概念:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点(1)根据上述概念,当m=2,n=2时,如图1,线段BC与
31、线段OA的距离是 2;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB长)为 ; (2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,求出点M随线段BC运动所围成的封闭图形的周长;点D的坐标为(0,2),m0,n0,作MNx轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与AOD相似?若存在,求出m的值;若不存在,请说明理由中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结
32、论给定不完全、答案不唯一的一类问题这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类 二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。三、中考考点精讲考点一:条件开放型 条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求例1
33、如图,在ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF添加一个条件,使得BDFCDE,并加以证明你添加的条件是 (不添加辅助线)考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍例2 如图,点E、F分别是AD上的两点,ABCD,AB=CD,AF=DE问:线段CE、BF有什么数量关系和位置关系?并加以证明考点三:条件和结论都开放的问题:此类问题没
34、有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断例3 如图,在AEC和DFB中,E=F,点A、B、C、D在同一直线上,有如下三个关系式:AEDF,AB=CD,CE=BF(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果,那么”)(2)选择(1)中你写出的一个命题,说明它正确的理由考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法
35、的一类题,它更具有开放性例4 看图说故事请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:指出变量x和y的含义;利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量四、中考真题演练一、填空题1写出一个x的值,使|x1|=x1成立,你写出的x的值是 2写出一个比4小的正无理数 3写一个比大的整数是 4将正比例函数y=6x的图象向上平移,则平移后所得图象对应的函数解析式可以是 (写出一个即可)5写出一个在实数范围内能用平方差公式分解因式的多项式: 6请写出一个二元一次方程组 ,使它的解是7写出一个你喜欢的实数k的值 ,使得反比例函数y=的图象在每一个象限
36、内,y随x的增大而增大8在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6的图象无公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可)9请写出一个图象在第二、第四象限的反比例函数解析式,你所写的函数解析式是 10存在两个变量x与y,y是x的函数,该函数同时满足两个条件:图象经过(1,1)点;当x0时,y随x的增大而减小,这个函数的解析式是 (写出一个即可)11如图,在ABC中,D是BC边上的中点,BDE=CDF,请你添加一个条件,使DE=DF成立你添加的条件是 (不再添加辅助线和字母)12如图,在四边形ABCD中,已知ABDC,AB=DC在不添加任何辅助线的前提下
37、,要想该四边形成为矩形,只需再加上的一个条件是 (填上你认为正确的一个答案即可)13如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可)15如图,D、E分别是ABC的边AB、AC上的点,连接DE,要使ADEACB,还需添加一个条件 (只需写一个)三、解答题16先化简:,再用一个你最喜欢的数代替a计算结果17先化简,然后从2x2的范围内选择一个合适的整数作为x的值代入求值18在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校
38、;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进(1)情境a,b所对应的函数图象分别是 、 (填写序号);(2)请你为剩下的函数图象写出一个适合的情境19如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明20在菱形ABCD中,ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎
39、样的数量关系,直接写出你的猜想;并选择一种情况给予证明21如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明你添加的条件是 22右表反映了x与y之间存在某种函数关系,现给出了几种可能的函数关系式:y=x+7,y=x5,y=,y=x1x6534y11.221.5(1)从所给出的几个式子中选出一个你认为满足上表要求的函数表达式: ;(2)请说明你选择这个函数表达式的理由23在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条
40、件:AB=DE,BF=EC,B=E,1=2请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明题设: ;结论: (均填写序号)证明:25如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件使四边形AECF是平行四边形,并予以证明,备选条件:AE=CF,BE=DF,AEB=CFD,我选择添加的条件是: (注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)26如图,在ABC中,点D、E分别在边BC、AC上,连接AD、DE,且1=B=C(1)由题设条件,请写出三
41、个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一: ;结论二: ;结论三: (2)若B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),求CE的最大值;若ADE是等腰三角形,求此时BD的长(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)中考数学复习专题讲座四:探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类二、解题策略与解法精讲由于探究型试题的
42、知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑: 1利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律2反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致3分类讨论法当命题的题设和结论不惟一确
43、定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果4类比猜想法即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用三、中考考点精讲考点一:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件例1 如图所示,在菱形ABCD中,AB=4,BAD=120°,AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
44、(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值考点二:结论探究型:此类问题给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目例3 如图所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向ABC外作正方形CADF和正方形CBEG,过点D作DD1l于点D1,过点E作EE1l于点E1(1)如图,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关
45、系,并说明理由;(3)如图,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系(不需要证明)例4在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OBOA,交抛物线于点B,以OA、OB为边构造矩形AOBC(1)如图1,当点A的横坐标为 时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,求点B的坐标;将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=x2,试判断抛物线y=x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由考点三:规律探究型:规律探索问题是指由几个具体结论通过类比、猜想、推理等一系
46、列的数学思维过程,来探求一般性结论的问题,解决这类问题的一般思路是通过对所给的具体的结论进行全面、细致的观察、分析、比较,从中发现其变化的规律,并猜想出一般性的结论,然后再给出合理的证明或加以运用.例5 如图(*),四边形ABCD是正方形,点E是边BC的中点,AEF=90°,且EF交正方形外角平分线CF于点F请你认真阅读下面关于这个图的探究片段,完成所提出的问题(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但ABE和ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝
47、试着去证AEMEFC就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EMAEF=90°FEC+AEB=90°又EAM+AEB=90°EAM=FEC点E,M分别为正方形的边BC和AB的中点AM=EC又可知BME是等腰直角三角形AME=135°又CF是正方形外角的平分线ECF=135°AEMEFC(ASA)AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论(3)探究3:小强进一步还想试试,如图3,若把条件“点E是
48、边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由例6如图所示,已知二次函数y=ax2+bx1(a0)的图象过点A(2,0)和B(4,3),l为过点(0,2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PHl,H为垂足(1)求二次函数y=ax2+bx1(a0)的解析式;(2)请直接写出使y0的对应的x的取值范围;(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;(4)试问是否存在实数m可使
49、POH为正三角形?若存在,求出m的值;若不存在,请说明理由例7 如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,ABOC,AOC=90°,BCO=45°,BC=6,点C的坐标为(9,0)(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=2,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,是否存在点P,使以O、E、P为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由例8 如图,在平面直角坐标系中有RtABC,A=90°,AB=AC,A(2,0)、B
50、(0,1)、C(d,2)(1)求d的值;(2)将ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B、C正好落在某反比例函数图象上请求出这个反比例函数和此时的直线BC的解析式;(3)在(2)的条件下,直线BC交y轴于点G问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由四、中考真题演练1如图,直线y=2x6与反比例函数y=的图象交于点A(4,2),与x轴交于点B(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由2如图,直线y=2x+2与y
51、轴交于A点,与反比例函数(x0)的图象交于点M,过M作MHx轴于点H,且tanAHO=2(1)求k的值;(2)点N(a,1)是反比例函数(x0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由3如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(xO)的图象相交于B、C两点(1)若B(1,2),求k1k2的值;(2)若AB=BC,则k1k2的值是否为定值?若是,请求出该定值;若不是,请说明理由4如图,在平面直角坐标系中,平行四边形OABC的顶点A、C的坐标分别为A(2,0)、C(1,2),反比例函数y=(k0)的图象经过点B(1)求k的值(2)将平行四边形O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅行活动策划方案6(3篇)
- 生日活动策划方案评价(3篇)
- 红色儿歌活动方案策划(3篇)
- 2025年企业财务管理与成本分析
- 2025年高职园林(园林工程造价)试题及答案
- 2025年中职工程计价管理(管理技术)试题及答案
- 2025年高职食品科学与工程技术(食品加工工艺)试题及答案
- 2025年大学广播电视编导(广播电视编导)试题及答案
- 2025年大学(中西医临床医学)中西医结合信息学试题及答案
- 2025年高职(宠物临床诊疗技术)宠物疾病诊断阶段测试题及答案
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库带答案详解
- 房地产售后服务及质量保证措施
- 国有企业采购管理规范 T/CFLP 0027-2020
- 国开2023年企业法务形考任务1-4答案
- 感应加热器安全操作规程
- 商业地产行业商业地产投资机会
- 两轮车控制器行业报告
- JSA临时用电作业安全分析表
- 2015-2022年北京卫生职业学院高职单招语文/数学/英语笔试参考题库含答案解析
- 赛肤润常见临床应用2010年
- 提高铝模板施工质量合格率
评论
0/150
提交评论