版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第七章 图像分割一、引言图像分割的目的理解图像的内容,提取出我们感兴趣的对象。 图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。 图像分割是模式识别和图像分析的预处理阶段。图像分割的方法通常采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相似的特征,如相同的灰度值、相同的颜色等。图像分割技术基于区域的分割技术 ; 基于边界的分割技术 。图像分割的数学描述令集合R代表整个区域,对R的分割可看作将R分成若干个满足以下5个条件的非空子集(子区域)R1 ,R1 ,Rn:是空集。中元素的逻辑谓词,是对所有在集合其中是连通的区域。对、;,有对、;有对、;,有,和对所有的、;、0
2、R)R(PRn ,1,2,i (5)FALSE)RP(Rji (4)TURE)P(Rn ,0,1,2,i )3(0RRjiji )2(R )1(iiijiijin1ii(1)所有子集构成图像;(2)各子集不重叠;(3)每个子集中的像素有某种共同的属性;(4)不同的子集属性不同;(5)每个子集中的所有像素应该是连通的。二、并行边界技术1、边缘检测原理:利用边缘灰度变换较剧烈的特点,根据灰度变换的情况,选择不同的检测方法使边缘凸现-P181。2、具体算子模板:用梯度算子(一阶差分)、Laplace算子(二阶差分)以及在图像增强中所讲的各类图像锐化算子模板都可以对图像进行锐化空域卷积。以点模板为例对
3、模板的另一种理解:91998877665544332211 iiizwzwzwzwzwzwzwzwzwzwz111181111二阶差分二阶差分1111一阶差分一阶差分| ),() 1,(| | ),(), 1(|),(jifjifjifjifjiG如果在模板区域内所有图像的象素有相同的值,则其和为零。如果模板中心位于某个灰度值不同于其8邻域灰度值的点上,则其和不为零;如果该点在偏离模板中心的位置上,其和也不为零,但其响应幅度比起这个点位于模板中心的情况要小一些。这时,可以采用阈值法清除这类较弱的响应,如果其幅度值超过阈值,就意味着点检测出来了,如果低于阈值则忽略掉。同样道理,可以构造线模板11
4、12221111211211211121212112111211123、边界闭合算法边界有一个特点:其梯度相似、梯度的方向角度的大小相似。将满足这两个条件的点赋予同等灰度,可构成边界。具体做法:求出f(x,y)邻域内所有像素的梯度和梯度角,将满足下列关系的f(x,y)、f(s,t) “连接”起来(赋予特殊的灰度值,如最大值)。)/Garctg(G GGf)mag(yf,xfG,Gy)f(x, At)(s,y)(x, Tt)f(s,y)f(x,yx1/22y2xTTyx其中S),(), 1( jifjifGxfx),()1,( jifjifGyfy4、哈夫变换用哈夫变换可以检测出某些已知形状的目
5、标的边界。前提条件是该目标边界的数学模型是已知的。哈夫变换具有较强的抗干扰性。某图像中一条直线,使用某种检测算子后有如图所示的边界提取结果。根据经验该边界是一条真线,可以用直线方程表达。使用哈夫变换可直接得出该边界的方程。实例:汽车大灯灯光截止线的测试。测试内容截止线与水平基线的夹角。右前大灯图像效果1)、哈夫变换原理如果对上述得到的图像求导数,如图所示。问题变成求导数值最大的点所共线的直线方程y=px+q。换句话说:在图像f(x,y)中,求取那些最多的满足方程y=px+q的点,并确定p、q值。将方程改写为q=-px+y,将x,y看成定数,则可以建立p,q直线方程。(xi,yi)(xj,yj)
6、yi=pxi+qxyq=-pxj+yjq=-pxi+yipqpq由图可以看出:通过求取共线点,构造直线方程y=px+q ,求取各直线的焦点即可确定点p,q值点线变换。2)、哈夫变换的操作1)、构造一个P、Q空间的二维累加数组A(p,q)2)、从f(x,y)的指定区域中取(xi,yi),按方程q=-pxi+yi在pmin,pmax中遍取可能的p值计算得到可能的q值。3)、在对应的位置计算A(p,q) =A(p,q)+14)、重复2)、3)直到将从f(x,y)的指定区域中的所有点取完。此时,A(p,q)数组中最大值所对应的p,q就是方程y=px+q中的p、q值。5)、根据y=px+q绘出f(x,y
7、)中的直线。pmin 0 pmaxqmax 0 qmin区域的选择:来自确认存在直线的区域。坐标的选择:来自对存在的直线参数的估测。3)、存在的问题即解决方法如果直线趋于垂直,则p,为直线的描述带来不方便。更一般的描述是用参数方程:=xcos+ysin。根据这个方程,图像中直线上的点,被映射成为(,)空间中的正弦曲线点曲线变换。例:某NN图像中有点1、2、3、4、5,设在-900,900中取值,画出它的哈夫变换图。1 N 24 5 N 3点1点2点3点4点5(0,0)(N,0)(N/2,N/2)(0 ,N)(N ,N)-9000-0.5N-N-N-4500.707N0-0.707N000N0.
8、5N0N4500.707N0.707N0.707N1.414N90000.5NNN-90 -45 0 45 901.414N-1.414N0点1点2点3点4点5从曲线上可以看出:2、3、4交于一点共线1、5、3交于一点共线4、1 交于一点共线4、5 交于一点共线1、2 交于一点共线2、5 交于一点共线实际上,哈夫变换不仅可以对直线方程的共线点进行检测,也可以对曲线方程的共线点进行检测,道理是一样的。所不同的是随着未知参数的增加,所构造的数组维数会上升,计算量增加。在,数组中数值较高的单元所对应的,值构成 的=xcos+ysin为图像中的一条直线。例如:根据经验,图像中的某目标一定是一个圆,其方
9、程可以用(x-a)2+(y-b)2=r2来描述,其中有三个未知数a、b、r。通过哈夫变换可以求得:给定x、y,遍取a、b的可能值计算出r。并使对应的三维累加数组的对应位置增1。ABRr、a、b的取值范围事先应有一个估测。给定xi、yi后,r=f(a,b)的方程是一个圆的方程;遍取可能的a、b值改变xi、yi,重复操作如此往复,可得参数a、b、r。给定xi、yi后,r=f(a,b)的方程仍是一个圆的方程。因此,用任何一个R=r平面来切割三维数组,看到的“截面”都是圆的集合。累加值最高的a、b值,就是共圆的x、y点的个数,此时的r就是圆的半径。同理,用哈夫变换可以检测椭圆、抛物线、指数曲线等可以用
10、方程表达的各类曲线。未知参数越多,数组的维数越大。ABRABRab三、串行边界技术图搜索定义代价函数c(p,q) :c(p,q)=H-|f(p)-f(q)|。其中,H为图像中的最大灰度值, f(p)、f(q)为像素p、q的灰度值。显然,代价函数的取值反比于像素间的灰度差值的绝对值。由此可得,代价大对应梯度小;反之代价小对应梯度大。如果能够发现一条累计代价最小的通路,这条通路就有可能是一个边界。722572510275527762351275527762351灰度图代价图累积代价最小通道可能边界搜索决策图ABCDEFGHI275527762351275527762351起 点A BB CA DB
11、 ED EC FD GE HH IF IE FG H四、并行区域技术灰度阈值分割法 灰度阈值分割法是最古老的分割技术,常应用于图像中组成感兴趣对象的灰度值是较均匀的,并且和背景的灰度值不一样。事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们所感兴趣的对象;反之则属于背景部分。 适合这种分割法的图像的直方图应是双峰模式,我们可以在两个峰值之间的低谷处找到一个合适的阈值。单一阈值方法不适合于由许多不同纹理组成一块块区域的图像。灰度阈值分割法图像分割技术的数学模型灰度阈值分割法的关键是求出合适的阈值。于是产生出各种各样求阈值的方法。TyxfTyxfLLyxg),(),( )
12、,(21TyxfTyxfLyxfyxg),(),( ),(),(TyxfTyxfyxfLyxg),(),( ),(),(K, kTyxfTkyxgKK-210 ),( ),(1当1、极小值点阈值利用了被分割对象灰度与非被分割对象灰度之间的差异进行分割,可以用单阈值分割,也可用多阈值分割。其主要问题是如何选择最佳阈值。原始图像分割结果(T=170)原始图像直方图灰度图具有二峰性二峰性的灰度图的2值化2、最优阈值绝大部分图像的背景与目标的灰度值有重叠部分,如何才能选择最优阈值,减小误分割的概率?设背景与目标的概率密度之和p(z)是两个单峰密度函数p1(z)、 p2(z)之和,且p1(z)、 p2(
13、z)已知;背景的象点数占图像总点数的百分比为P1,目标点占P2,且P1P21则混合概率密度为22222221211122112)(exp22)(exp2)()()(zPzPzpPzpPzpTdzzpTE)()(21TdzzpTE)()(12误判概率:目标误判为背景的概率背景误判为目标的概率p1(z)p2(z)T目标目标背景背景总的误判概率之和为:)()()(2112TEPTEPTE为了使其最小,对T求导数,令导数等于0。解出最优阈值为:1221221ln2PPT3、按幅度设置阈值分割T1T2T3K, kTyxfTkyxgKK-210 ),( ),(1当Kp(k)在实际工作中,概率密度的求取是一
14、件非常困难的事情。3、依赖区域的阈值选取对于具有明显双峰的直方图可以方便的选择阈值T。但有一些图像,物体和背景的灰度差异不大或由于噪声的原因使峰谷被填平等原因,使得选择T值变得困难。为此得寻找其它的方法来确定T值。1)、直方图变换解决的问题是如何将原来峰谷差异不大的直方图,变成便于选择T的峰谷差异较大的直方图。具体方法:对图像求梯度;做出梯度图像灰度的直方图,选择T。基本原理xf(x)hf(x)xf(x)hf(x)空间坐标空间坐标灰度坐标梯度坐标灰度直方图梯度直方图取双峰间梯度最小点所对取双峰间梯度最小点所对应的灰度值为阈值应的灰度值为阈值低梯度值直方图与高梯度值直方图如果双峰特性仍不明显,在
15、进行直方图统计时对像素点的灰度值根据该点的梯度g做加权处理。低梯度值直方图的像素加权值为1/(1+g)2;高梯度值直方图的像素加权值为g。2)、灰度值和梯度值散射图对图像求梯度后,根据原图像的灰度分布和梯度图像的数值构造灰度值和梯度值散射图选择T。xx对高于某一个对高于某一个梯度值的像素梯度值的像素进行统计进行统计对低于某一个对低于某一个梯度值的像素梯度值的像素进行统计进行统计hf(x,y)|f(x,y)lowhf(x,y)|f(x,y)high空间坐标空间坐标空间坐标空间坐标频度坐标频度坐标频度坐标频度坐标取该点的灰取该点的灰度值为度值为T3)、基于过渡区的方法过渡区的特点:任何背景与目标的
16、过渡至少存在一个像素宽的过渡区。因此,过渡区是可以观察到的。设f(i,j)为数字图像, g(i,j)为f(i,j)的梯度图,Z为图像的灰度集合;定义图像有效平均梯度EAG。背景灰度范围目标灰度范围T T),( yxfZi,jZi,jp(i,j) TPg(i,j)TGTPTGEAG 其中:LTG为梯度图的总梯度值TP为非零梯度像素的总数可见EGA为梯度的总值被有效梯度(非零梯度像素)所平均有效平均梯度。如果设置分割阈值L对图像进行分割,有两种分法。0001g(i,j) g(i,j) p(i,j)Lf(i,j) L Lf(i,j) jif(i,j)fLf(i,j) jifLf(i,j) L (i,
17、j)flowhigh ),( ),( 对分割后的图像求梯度,而后求EAG, EAG应是阈值L的函数EAG(L)。对应两种分割方法,应有两种EAG(L): 可以证明,它们都是单峰曲线。设当L=Lhigh和L=Llow时取得,可以证明这两个极值点有三个重要性质:)( )(LEGALEGAlowhigh和对每个过渡区, Lhigh和Llow总是存在,并且只存在一个;Lhigh和Llow所对应的灰度值都具有明显的像素特性区别能力;对于同一个过渡区, Lhigh不会比Llow小,在实际图像中Lhigh总大于Llow。显然,在介于Lhigh和Llow之间取一个值作为分割阈值即可对图像进行分割。LLlow0
18、EAGlow(L)目标过渡区背景 LhighLlowTLMAXLhighL0EAGhigh(L)LMAX4、依赖坐标的阈值选取对一幅图像中的物体,有时可以采用统一的一个阈值进行分割。而有时,由于图像的内容以及得到图像的方式导致不能采用统一的一个阈值进行分割,就需要将图像分成若干个子图像,对每个子图像采用不同的阈值进行目标与背景的分割。然后再将各子图像拼接起来。具体做法:将整幅图像分成一系列互相之间有50重叠的子图像;做出每个子图像的直方图;检测各个子图像的直方图是否为双峰;是,选最优阈值;否,不进行处理;根据得到的最优阈值通过插值的方法得到所有子图像的阈值;根据各子图像的阈值,通过差值得到所有
19、像素的插值;对图像进行分割。示例将这四个阈值作为四个顶点像素的阈值;采用线性插值得方法,得到所有像素的阈值,对图像进行分割,例如:待分割图像66子图像各重叠50插值后每个子图像有4个阈值它其 0),(255 jiTf(i,j) f(i,j)5、连通区域标记像素标记:定义连通;“从左到右,从上到下”扫描;进入一个像素后,考虑左、上方元素的连通性(先左后上);不同的连通域,赋予不同的灰度值Ti。标记完成后,进行第二次扫描分割。4-连通定义:V表示定义连接的灰度值集合;4-连通:2个象素p和r在V中取值且r在N4(p) 中。例:定义连通域为4-连通,4-邻域像素值之差的绝对值小于5; 灰度集合为V=
20、V-5,V+5 ;连通域不同,V的取值范围不同。用连通区域标记法对下面的图像进行分割。253035404448553335404344505638404444475255454848495054584750535656586622223333444455333333444455553344444444555544444444445555444455555555662525353544445533333543445055334040404452554545454545545445455353535366五、串行区域技术什么是区域?一般用以下性质来定义区域:在同一区域的像素点必须相连。这就意味着我
21、们可以从现在所处的像素点出发,按照某种连接方式到达任何一个邻近的像素点。常用的有两种各向同性连通方式:四连通和八连通。 区域之间不能重叠,也就是说一个像素只能有一个“标记”。 在区域Ri中每一个像素点必须遵从某种规则P(Ri)。例如我们说P(Ri)为真,当区域Ri中所有像素具有相似的灰度(相似性在一定的范围内)。 两个不同的区域Ri和Rj具有的规则不同。1、区域生长法最简单的区域生长法是将像素聚类,为了达到这一目的,可以从一个种子像素点出发,按照某种连通(如8连通)方式和规则P来检查周围邻近的像素点,如果具有和种子像素点相似的性质,就说明它们属于同一区域,怎样获得初始的种子像素点和制定生长规则
22、是区域生长法的关键。 例如:生长规则的连通性为8连通;连通邻域的差值为T。1047510477015552056522564115551155511555115551155511575115771155511555115555555555555555555555555555T3T1T8原图2、区域分割与合并 任何一幅图像都可以用多层四叉树来表示。若图像大小为NN,且N=2m 时,其层数为m+1。例如:m=2,层数2+1=3R1R2R3R4RR1R2R3R4RR4R3R2R1R1R2R3R4 具体步骤1)、对任何一区域Ri,如果区域内某种特征的均匀性不符合设定的准则,就按四叉树原则继续分割;2)、相邻的工作区域Ri、Rj符合设定的准则,就合并;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025 七年级数学下册折线统计图的绘制技巧课件
- 高层建筑竣工后设备保养
- 自然分娩的水中分娩体验
- 工程监理企业资质网上申报指导手册
- 妇科护理新技术与新进展
- 脑出血患者的预防措施
- 护理实践中的循证医学应用
- 冬季防溺水安全教育课件
- 油茶树除草技术培训课件
- 河北省考笔试试题及答案
- 2025大理州强制隔离戒毒所招聘辅警(5人)笔试考试备考题库及答案解析
- 2025年安全培训计划表
- 2026年榆林职业技术学院单招职业技能测试题库参考答案详解
- 2025年沈阳华晨专用车有限公司公开招聘笔试历年参考题库附带答案详解
- 2026(苏教版)数学五上期末复习大全(知识梳理+易错题+压轴题+模拟卷)
- 垃圾中转站机械设备日常维护操作指南
- 单证主管助理客户服务能力提升方案
- 汽车行业可信数据空间方案
- 畜牧业机械化培训课件
- 工程质量管理工作制度
- 云南交投集团笔试试题及答案
评论
0/150
提交评论