下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、下载可编辑数据挖掘 概念概念与技术Jiawei HanMicheline Kamber著范明孟晓峰 译第1章引言1.1什么是数据挖掘?在你的回答中,针对以下问题:1.2 1.6定义下列 数据挖掘功能:特征化 、区分 、关联和相关分析、预测聚 类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功 能的例子 。解答 :?特征化是一个目标类数据的一般特性或特性的汇总。例如 ,学生的特征 可被提出 ,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA: Grade point aversge)的信息 , 还有所修的课程的最大数量。? 区分是将 目标 类
2、数 据对 象的 一般 特性 与一个 或多 个对 比类 对象 的一般 特性进行比较 。 例如 ,具有高 GPA 的学生 的一般特性 可被用来与具有 低 GPA 的一般 特性比较 。 最终的描述 可能是学生 的一个一般 可比较的 轮廓 ,就像具有高 GPA 的学生的 75% 是四年级计算机科学专业的学生 ,而具有低 GPA 的学生的 65% 不是 。? 关联是指发现关联规则 ,这些规则表示一起频繁发生在给定数据集的特 征值的条件。例如,一个数据挖掘系统可能发现的关联规则为:major(X,“computingscience ”)?owns(X,“personalcomputer”) support
3、=12%,confidence=98%其中 , X 是一个表示学生的变量。这个规则指出正在学习的学生, 12%(支持度 )主修计算机科学并且拥有一台个人计算机。这个组一个学生 拥有一台个人电脑的概率是98% (置信度 ,或确定度 )。? 分类与预测不同 ,因为前者的作用是构造一系列能描述和区分数据类型 或概念的 模型 (或功能 ),而后者 是建立一个模型 去预测缺失的或.专业 .整理 .下载可编辑无 效 的、并且通常是数字的数据值。它们的相似性是他们都是预测的工具 : 分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。.专业 .整理 .下载可编辑?聚类分析的数据对象
4、不考虑已知的类标号 。对象 根据最大花蕾内部的 相似性 、最小化类之间的相似性的原则进行聚类或分组。形成的每一簇可以被看作一个对象类。聚类也便于分类法组织形式,将观测组织成类分层结构 ,把类似的事件组织在一起。? 数据延边分 析描述和模 型化随时间变 化的对象 的 规律或 趋势 ,尽管 这可能包括时间相关数据的特征化、区分 、关联和相关分析、分类 、或预测 ,这种分析的明确特征包括时间序列数据分析、序列或周期模式匹配、和基于相似性的数据分析1.3 1.9列举并描述说明数据挖掘任务的五种原语。解答 :用于指定数据挖掘任务的五种原语是:? 任务相关数据:这种原语指明给定挖掘所处理的数据。它包括指明
5、数据库、数据库表 、或数据仓 库,其中包括包含 关系数 据、选择关系 数据的条件 、用于探索的关系数据的属性或维、关于修复的数据排序和分组。?挖掘的数据类型 :这种 原语指明了所要执行的 特定数据挖掘功能 ,如 特征化、区分 、关联、分类、聚类、或演化分析。同样 ,用户的要求可能更特殊 ,并可能提供所发现的模式必须匹配的模版。这些模版或超模式(也被称为超规则)能被用来指导发现过程。? 背景知识 :这种 原语允 许用户指定已 有的关于 挖掘领域的知识 。 这样的知识能被用来指导知识发现过程,并且评估发现的模式。关于数据中关系的概念分层和用户信念是背景知识的形式。? 模式兴趣度 度量 :这种 原语
6、允许用户 指定功能 ,用于从知识中 分割不 感兴趣的模式 ,并且被用来指导挖掘过程,也可评估发现的模式 。 这样就允许用户限制在挖掘过程返回的不感兴趣的模式的数量,因为一种数据挖掘系统可能产生大量的模式。兴趣度测量能被指定为简易性、确定性 、适用性 、和新颖性的特征。? 发现模式的可 视化 :这种原语述及发 现的模式应 该被显示出 来。为了 使数据挖掘能有效地将知识传给用户,数据挖掘系统应该能将发现的各种形式的模式展示出来,正如规则 、表格 、饼或条形图、决策树 、立方体.专业 .整理 .下载可编辑或其它视觉的表示。1.4 1.13描述以下数据挖掘系统与数据库或数据仓库集成方法的差别:不耦合、
7、松散耦合 、半紧耦合和紧密耦合。你认为哪种方法最流行,为什么 ?解答 : 数据挖掘系统和数据库或数据仓库系统的集成的层次的差别如下 。? 不耦合 :数据挖 掘系统 用像平面文件 这样的原 始资料获得被挖 掘的原始数据集 ,因为没有数据库系统或数据仓库系统的任何功能被作为处理过程的一部分执行。因此 ,这种构架是一种糟糕的设计。? 松散耦合 :数据 挖掘系 统不与数据库 或数据仓 库集成 ,除了使用 被挖掘的初始数据集的源数据和存储挖掘结果。这样 ,这种构架能得到数据库和数据仓库提供的灵活、高效 、和特征的优点。但是 ,在大量的数据集中,由松散耦合得到高可测性和良好的性能是非常困难的,因为许多这种
8、系统是基于内存的。?半紧密耦合:一些 数据 挖掘原语 ,如 聚合 、分类 、或统计功能的预计算 ,可在数据库或数据仓库系统有效的执行,以便数据挖掘系统在挖掘- 查询过程的应用。另外 ,一些经常用到的中间挖掘结果能被预计算并存储到数据库或数据仓库系统中,从而增强了数据挖掘系统的性能。? 紧密耦合:数据库或数据仓库系统被完全整合成数据挖掘系统的一部份,并且因此提供了优化的数据查询处理。这样的话,数据挖掘子系统被视为一个信息系统的功能组件。这是一中高度期望的结构,因为它有利于数据挖掘功能、高系统性能和集成信息处理环境的有效实现。从以上提供的体系结构的描述看,紧密耦合是最优的,没有值得顾虑的技术和执行
9、问题。但紧密耦合系统所需的大量技术基础结构仍然在发展变化,其实现并非易事 。因此 ,目前最流行的体系结构仍是半紧密耦合,因为它是松散耦合和紧密耦合的折中。1.5 1.14描述关于数据挖掘方法和用户交互问题的三个数据挖掘挑战。.专业 .整理 .下载可编辑第 2 章数据预处理2.1 2.2假设给定的数据集的值已经分组为区间。区间和对应的频率如下 。年龄频率1520051545015203002050150050807008011044计算数据的近似中位数值。解答 : 先判定中位数区间:N=200+450+300+1500+700+44=3194; N/2=1597 200+450+300=950&
10、lt;1597<2450=950+1500; 2050对应中位数区间。 我们有 : L1=20 ,N =3197式(2.3):median?, (freq ) l=950 , freqmed ian=1500?N/2-freq?L1l ?width? freq median?, width =30 ,使用公?3197 / 2- 950?20?3032.97?1500?median =32.97岁。2.2 2.4 假定用于分析的数据包含属性age 。 数据元组的age 值(以递增序) 是:13 ,15,16,16 ,19,20,20,21 ,22,22 , 25 ,25 ,25 ,25 ,
11、30 ,33 ,33,35,35 ,35,35,36, 40,45,46,52 , 70 。(a) 该数据的均值是什么 ?中位数是什么 ?(b) 该数据的众数是什么 ?讨论数据的峰 (即双峰 、三峰等 )。(c) 数据的中列数是什么 ?(d) 你能(粗略地 )找出数据的第一个四分位数 ( Q 1)和第三个四分位数 ( Q3 ).专业 .整理 .下载可编辑吗?(e) 给出数据的五数概括 。(f) 画出数据的盒图 。(g)分位数 分位数图与分位数图的不同之处是什么?解答 :(a) 该数据的均值是什么 ?中位数是什么 ?均值是 : x1Nxi809 / 2729.96 ? 30 (公式 2.1 )。
12、中位数应是第 14N i1个,即 x14=25= Q2 。(b) 该数据的众数是什么 ?讨论数据的峰 (即双峰 、三峰等 )。 这个数集的众数有两个 : 25 和 35 ,发生在同样最高的频率处,因此是双峰众数 。(c)数据的中列数是什么? 数据的中列数是最大术和最小是的均值。即:midrange =(70+13)/2=41.5。(d)你能(粗略地 )找出数据的第一个四分位数( Q1)和第三个四分位数( Q3)吗?数据集的第一个四分位数应发生在25% 处,即在 (N+1)/4=7处。所以 :Q1=20 。而第三个四分位数应发生在75% 处,即在 3 ×(N+1)/4=21处。所以:Q
13、3=35(e) 给出数据的五数概括 。一个数据集的分布的5 数概括由最小值、第一个四分位数、中位数 、第三个四分位数 、和最大值构成。它给出了分布形状良好的汇总,并且这些数据是:13 、20、25、35 、70。(f)画出数据的盒图。略。(g)分位数 分位数图与分位数图的不同之处是什么? 分位 数图是一种用来展 示数据 值低于或 等于在一个单变量 分布中 独立的变量的粗略百分比。这样 ,他可以展示所有数的分位数信息,而为独立变量测得的值(纵轴 )相对于它们的分位数(横轴 )被描绘出来。但分位数 分位数图用纵轴表示一种单变量分布的分位数,用横轴表示另一.专业 .整理 .下载可编辑单变量分布的分位
14、数。两个坐标轴显示它们的测量值相应分布的值域,且点按照两种分布分位数值展示。 一条线 ( y=x )可画到图中,以增加图像的信息。落在该线以上的点表示在y 轴上显示的值的分布比x 轴的相应的等同分位数对应的值的分布高 。 反之 ,对落在该线以下的点则低。2.3 2.7使用习题2.4 给出的 age 数据回答下列问题:(a) 使用分箱均值光滑对以上数据进行光滑 ,箱的深度为 3 。解释你的步骤 。评述对于给定的数据 ,该技术的效果 。(b) 如何确定数据中的离群点 ?(c) 对于数据光滑 ,还有哪些其他方法 ?解答 :(a) 使用分箱均值光滑对以上数据进行光滑 ,箱的深度为 3 。解释你的步骤
15、。评述对于给定的数据 ,该技术的效果 。用箱深度为 3的分箱均值光滑对以上数据进行光滑需要以下步骤:?步骤 1 :对数据排序 。( 因为数据已被排序 ,所以此时不需要该步骤 。)?步骤 2:将数据划分到大小为3 的等频箱中 。箱 1:13,15 ,16箱 2:16,19,20箱 3:20,21,22箱 4:22, 25,25箱 5:25, 25,30箱6:33,33, 35箱 7:35,35, 35箱 8 :36,40,45箱 9:46,52, 70?步骤3:计算每个等频箱的算数均值。?步骤4:用各箱计算出的算数均值替换每箱中的每个值。箱 1: 44/3 , 44/3, 44/3 箱 2 :
16、55/3, 55/3 , 55/3箱3:21,21,21箱 4:24,24 ,24箱 5:80/3 ,80/3 ,80/3 箱6 :101/3 ,101/3,101/3箱 7:35,35,35箱 8: 121/3 , 121/3 , 121/3箱 9 : 56 , 56 , 56 (b)如何确定数据中的离群点? 聚类的方法可用来将相似的点分成组或“簇,” 并检测离群点。落到簇的集外的值可以被视为离群点。作为选择,一种人机结合的检测可被采用,而计算机用一种事先决定的数据分布来区分可能的离群点。这些可能的离群点能被用人工轻松的检验,而不必检查整个数据集。(c)对于数据光滑,还有哪些其他方法?.专业
17、 .整理 .下载可编辑其它可用来数据光滑的方法包括别的分箱光滑方法,如中位数光滑和箱边界光滑 。作为选择 ,等宽箱可被用来执行任何分箱方式,其中每个箱中的数据范围均是常量 。除了分箱方法外 ,可以使用回归技术拟合成函数来光滑数据,如通过线性或多线性回归。分类技术也能被用来对概念分层,这是通过将低级概念上卷到高级概念来光滑数据。2.4 2.10 如下规范化方法的值域是什么?(a) min-max规范化 。(b) z-score规范化 。(c) 小数定标规范化。解答 :(a) min-max规范化 。 值域是new_min,new_max 。 (b) z-score规范化 。值域是 (old _m
18、in mean)/,(old_max mean)/ ,总的来说 ,对于所有可能 的数据集的值域是(, + )。(c) 小数定标规范化 。值域是 ( 1.0 ,1.0) 。2.5 2.12 使用习题 2.4 给出的 age数据 ,回答以下问题 :(a)使用 min-max规范化将 age 值 35变换到 0.0 , 1.0 区间 。(b)使用 z-score规范化变换age 值 35,其中 age 的标准差为 12.94岁。(c)使用小数定标规范化变换age 值 3 5。(d) 对于给定的数据 ,你愿意使用哪种方法 ?陈述你的理由 。解答 :(a)使用 min-max规范化将age值 35 变换
19、到 0.0 , 1.0 区间 。 min A=13 , max A =70 , new _min A=0.0 , new _max A=1.0 ,而 v=35 ,v'v -minnew _A - new _Anew _ minAAmaxminmax A -minA35 -131.0 - 0.00.00.386070- 13.专业 .整理 .下载可编辑(b) 使用 z-score规范化变换age值 35 ,其中 age的标准差为 12.94岁。13152161922021222425A273023343536404546527080927N2729 .963 Ai -2161.2949
20、, A212.7002AAAi 1N N Ai -22或 s A167 .4986 , sA12.9421As Ai 1Nv=35v 'v -A35 -5.0370.3966 0.40029.963A12.700212.7002或 v s 'v -A35 -5.0370.3892 0.3929.963sA12.942112.9421(c) 使用小数定标规范化变换age值35。由于最大的绝对值为70 ,所以 j=2。 v'v0.35j351010 2(d) 对于给定的数据 ,你愿意使用哪种方法 ?陈述你的理由 。略。2.6 2.14假设 12 个销售价格记录组已经排序如下
21、:5,10 ,11 ,13 ,15 ,35,50 ,55,72, 92 , 204 , 215 。 使用如下每种方法将其划分成三个箱。(a) 等频(等深)划分。(b) 等宽划分 。(c) 聚类。 解答:(a) 等频(等深)划分。bin15,10,11,13bin115,35,50,55.专业 .整理 .下载可编辑bin172,91,204,215(b)等宽划分 。每个区间的宽度是: (215-5)/3=70bin15,10,11,13,15,35,50,55,72bin191bin1204,215(c)聚类 。我们可以使用一种简单的聚类技术:用 2 个最大的间隙将数据分成3 个箱 。bin15
22、,10,11,13,15bin135,50,55,72,91bin1204,2152.7 2.15使用习题 2.4 给出的 age 数据 ,(a) 画出一个等宽为 10 的等宽直方图 ;(b)为如下每种抽样技术勾画例子: SRSWOR, SRSWR ,聚类抽样 ,分层抽样 。 使用大小为5 的样本和层“青年 ”“中年, ”和 “老年 ”。解答 :(a)画出一个等宽为10 的等宽直方图;876543210152535455565.专业 .整理 .下载可编辑(b)为如下每种抽样技术勾画例子: SRSWOR, SRSWR ,聚类抽样 ,分层抽样 。 使用大小为5 的样本和层“青年 ”“中年, ”和
23、“老年 ”。元组 :T 113T 1022T 1935T 215T 1125T 2035T 316T 1225T 2135T 416T 1325T 2236T 519T 1425T 2340T 620T 1530T 2445T 720T 1633T 2546T 821T 1733T 2652T 922T 1835T 2770SRSWOR 和 SRSWR:不是同次的随机抽样结果可以不同,但前者因无放回所以不能有相同的元组 。SRSWOR(n=5)SRSWR(n=5)T 416T 720T 620T 720T 1022T 2035T1125T 2135T 2652T 2546聚类抽样 :设起始聚类
24、共有6 类,可抽其中的 m 类 。Sample1Sample2Sample3Sample4Sample5Sample6T 113T620T 1125T 1633T2135T 2652T 215T720T 1225T 1733T2236T 2770T 316T821T 1325T 1835T2340T416T22T1425T1935T24459T 519T1022T 1530T 2035T2546Sample2Sample5.专业 .整理 .下载可编辑T620T2135T720T2236T821T2340T922T2445T 1022T2546分层抽样 :按照年龄分层抽样时,不同的随机试验结果不
25、同。T113youngT 1022youngT 1935middleT215youngT 1125youngT 2035middleT316youngT 1225youngT 2135middleT416youngT 1325youngT 2236middleT519youngT 1425youngT 2340middleT620youngT 1530middleT 2445middleT720youngT 1633middleT 2546middleT821youngT 1733middleT 2652middleT922youngT 1835middleT 2770seniorT416yo
26、ungT 1225youngT 1733middleT 2546middleT 2770Senio r2.8 55555555555555555555555555.专业 .整理 .下载可编辑3.1 3.4假定 BigUniversity的数据仓库包含如下 4 个维 :student(student_name,area_id,major,status,university),course(course_name,department), semester(semester,year) 和 instructor(dept,rank) ; 2 个度量: count和 avg_grade。 在最低概
27、念层, 度量 avg_grade存放学生的实 际课程成绩 。 在较高 概念 层, avg_grade存放给定组合的平均成绩。(a)为该数据仓库画出雪花形模式图。(b)由 基 本 方 体 student,course,semester,instructor开 始 , 为 列出 BigUniversity每个学生的CS 课程 的平均成 绩, 应当 使用哪些特 殊的 OLAP操作 。(c)如果每维有5层(包括all“student<major<status<university<all”, 该立方体包含多少方体解答 :a)为该数据仓库画出雪花形模式图。 雪花模式如图所示。)
28、,如?b)由 基 本 方 体 student, course, semester, instructor开 始 , 为 列出 BigUniversity每个学生的CS 课程的平均成绩,应当使用哪些特殊的 OLAP 操作 。这些特殊的联机分析处理( OLAP )操作有 :i.沿课程 ( course )维从 course_id “上卷 ”到 department。ii. 沿学生 ( student )维从 student_id “上卷 ”到 university 。iii.取 department=“CS ”和 university=“Big University”,沿课程( course )维
29、和学生 ( student )维切片 。iv. 沿学生 ( student )维从 university 下钻到 student_name 。c)如果每维有5层 (包括all) , 如“student<major<status<university<all,”该立方体包含多少方体?这个立方体将包含54 =625个方体 。.专业 .整理 .下载可编辑course维表course_idcourse_namedepartmentsemester维表semester_idsemesteryearinstructor维表Instructor_id dept rankuniv事实表
30、student_idcourse_idsemester_idinstructor_idcountavg_gradearea维表area_idcityprovincecountry题 3.4 图 题 3 .4 中数据仓库的雪花形模式student维表student_idstudent namearea_idmajorstatusuniversity3.2 22222223.3 3333333.专业 .整理 .下载可编辑4.1 2008-11-294.2有几种典型的立方体计算方法,4.3题 4.12 考虑下面的多特征立方体查询:按 item , regio n , month的所有 子集分组 ,对
31、每组找出2004 年的最小货架寿命 ,并对价格低于100 美元、货架 寿命在最小货架寿命的1.251.5倍之间的元组找出总销售额部分。d)画出该查询的多特征立方体图。e) 用扩充的 SQL 表示该查询 。f)这是一个分布式多特征立方体吗?为什么 ?解答 :(a) 画出该查询的多特征立方体图。 R 0 R1( 1.25*min(shelf)and1.5*min(shelf) (b)用扩充的SQL 表示该查询。selectitem,region, month, Min(shelf),SUM(R1)fromPurchasewhereyear=2004cube byitem,region, month
32、:R1such thatR1.shelf 1.25*MIN(Shelf) and(R1.Shelf 1.5*MIN(Shelf) andR1.Price<100(c)这是一个分布式多特征立方体吗?为什么 ? 这不是一个分布多特征立方体,因为在 “suchthat ”语句中采 用了 “”条 件 。4.4 2008-11-294.5 2008-11-29.专业 .整理 .下载可编辑5.1 Apriori 算法使用子集支持度性质的先验知识。节介绍了由频繁项集产生关联规则的方法。提出了一个更有效的方法 。解释它为什么比节的方法更有效。(提示 :考虑将习题5.1(b) 和习题5.1(c)的性质结合
33、到你的设计中。)5.3 数据库有 5 个事物 。 设 min_sup=60%,min_conf=80 。 TID购买的商品T100M, O, N, K, E, YT200D, O, N, K, E, YT300M, A, K, ET400M, U, C, K, YT500C, O, O, K, I, Eg) 分别使 用 Aprio ri 和 FP 增长算 法找出所有 的频繁项集 。 比较两种 挖掘过程的效率 。h)列举所有与下面的的元规则匹配的强关联规则( 给出支持度s 和置信度 c ),其中 ,X是代表顾客的变量,item是表 示项的变量(如“A ”、“B ”等 ):? x transact
34、ion,buys(X, item 1 )buys(X, item 2 )? buys(X, item 3 ) s, c解答 :(a) 分别使用 Aprio ri 和 FP 增长算法 找出所有的频繁 项集 。 比较两种挖 掘过程的效率 。Aprio ri 算法 :由于只有 5 次购买事件,所以绝对支持度是5 ×min_sup=3。.专业 .整理 .下载可编辑? M3?MO1?MK 3?O3? M?MK?33? OKE 3?C3?O3?ME2?OK3? KEY2 ?N?2?2?MY?5?KL2? OE?KL1?3?5?OK3?KE 4?EE4C2?4?OE 3? Y?OY 2C1?3?D
35、1?A1?Y3?KY3?U?4?1?KE?C 2?3?I?KY?1?L3OKE 3? ?2EY?FP-growth :数据库的第一次扫描与Aprio ri 算法相同 ,得到 L1 。 再按支持度计数的递减序排序,得到 : L=(K:5),(E:4), (M:3), (O:3), (Y:3)。扫描没个事务,按以上 L 的排序 ,从根节点开始,得到 FP-树。RootK:5E:4M:1M:2O:2Y:1O:1Y:1Y:1题 5.3 图 FP 增长算法项条件模式基条件 FP 树产生的频繁模式.专业 .整理 .下载可编辑YK,E,M,O:1 , K,E,O:1 , K,M:1K:3K,Y:3K,E,M
36、:1 , K,E:2K:3, E:3K,O:3 , E,O:3 , K,E,O:3OK,E:2 , K:1K:3K,M:3MK:4K:4K,E:4.专业 .整理 .下载可编辑效率比较 : Aprio ri 算法的计算过程必须对数据库作多次扫描,而 FP- 增长算法在构造过程中只需扫描一次数据库,再加上初始时为确定支持度递减排序的一次扫描 ,共计只需两次扫描。 由于在 Aprio ri 算法中 的自身连接 过程产生候选项集 ,候选项集产生的计算代价非常高,而 FP- 增长算法不需产生任何候选项 。(b) 列举所有与下面的的元规则匹配的强关联规则(给出支持度s和置信 度c ),其中 , X是代表顾客的变量, item是表示项的变量(如 “A”、“B ”等):? x transaction,buys(X, “K”)buys(X,“O ”)? buys(X,“E ”)s=0.6, c=1? x transaction,buys(X, “E”)buys(X,“E”)? buys(X,“K”)s=0.6, c=1或也可表示为K,O Es(support)=0.6 或 60%,c(confidence)=1 或100% E,OKs(support)=0.6或 60%,c(confidence)=1或 100%5.4 (实现项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江公安警官职业学院《财务管理》2025 学年第二学期期末试卷
- 2025首都医科大学附属北京同仁医院门头沟医院(北京市门头沟区医院)面向社会引进高层次医疗卫生技术人才4人考试核心试题及答案解析
- 2025年脑智研究院招聘张若冰课题组招聘生物电镜图像处理与自动化工程师岗位备考题库参考答案详解
- 2025安徽黄山太平经济开发区投资有限公司招聘高管人员1人考试重点题库及答案解析
- 2026年交通银行交银金融科技秋季校园招聘备考题库及一套完整答案详解
- 2025下半年广东揭阳市市直卫生健康事业单位赴外地院校招聘工作人员27人备考核心题库及答案解析
- 2025湖北随州市广水市事业单位面向驻广部队随军家属招聘5人笔试重点题库及答案解析
- 2025下半年四川绵阳职业技术学院考核招聘高层次人才2人备考核心题库及答案解析
- 新疆分院招聘广东电信规划设计院2026届校招开启(12人)备考笔试试题及答案解析
- 2025湖南长沙浏阳市人民医院公开招聘编外合同制人员8人备考核心题库及答案解析
- 老年人失智症护理与照护
- 2025重庆市勘规数智科技有限公司招聘3人考试题库必考题
- 村监委会职责课件
- 历史试卷答案四川省达州市普通高中2026届高三第一次诊断性测试(达州一诊)(12.15-12.17)
- 平津战役讲解课件
- 农村房屋安全排查培训
- 2026-2031年中国文化旅游行业市场未来发展趋势研究报告
- 超星尔雅学习通《人人都能上手的AI工具(超星公司)》章节测试答案
- 选矿厂检修培训
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
- 2025年广西继续教育公需科目真题及答案
评论
0/150
提交评论