数学问题之行程问题、推理原理_第1页
数学问题之行程问题、推理原理_第2页
数学问题之行程问题、推理原理_第3页
数学问题之行程问题、推理原理_第4页
数学问题之行程问题、推理原理_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、行程问题两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。这样的问题一般称为追及问题。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程对于有三个以上人或车同时参与运动的行程问题,在分析其中某两个的运动情况的同时,还要弄清此时此刻另外的人或车处于什么位置,他(它)与前两者有什么关系。分析复杂的行程问题时,最好画线段图帮助思考理解并熟记下面的结论,对分析、解答复杂的行程问题是有好处的。(3)甲的速度是a,乙的速度是b,在相同时间内,甲、乙一共行的【例

2、1】甲、乙两人分别从A、B两地同时出发,相向而行。如果两人都按原定速度行进,那么4小时相遇;现在两人都比原计划每小时少走1千米,那么5小时相遇。A、B两地相距多少千米?【分析】可以想象,如果甲、乙两人以现在的速度(比原计划每小时少走1千米)仍然走4小时,那么他们不能相遇,而是相隔一段路。这段路的长度是多少呢?就是两人4小时一共比原来少行的路。由于以现在的速度行走,他们5小时相遇,换句话说,再行1小时,他们恰好共同行完这段相隔的路。这样,就能求出他们现在的速度和了。【解】1×4×2÷(5-4)×5=40(千米)这道题属于相遇问题,它的基本关系式是:速度和&

3、#215;时间=(相隔的)路程。但只有符合“同时出发,相向而行,经过相同时间相遇”这样的特点才能运用上面的关系式。不过,当出现“不同时出发”或“没有相遇(而是还相隔一段路)”的情况时,应该通过转化条件,然后应用上面的关系式。【例2】小王、小张步行的速度分别是每小时4.8千米和 5.4千米。小李骑车的速度为每小时10.8千米。小王、小张从甲地到乙地,小李从乙地到甲地,他们三人同时出发,在小张与小李相遇5分钟后,小王又与小李相遇。小李骑车从乙地到甲地需多长时间?【分析】为便于分析,画出线段图36-1:图中C点表示小张与小李相遇地点,D点表示他们相遇时小王所在地点。根据题意,小王从D点、小李从C点同

4、时出发,相向而行,经过5分钟相遇。因此,DC的长为这段长度也是相同时间内,小张比小王多行的路程。这里的“相同时间”指从三人同时出发到小张与小李相遇所经过的时间。这段时间为1.3÷(5.4-4.8)×60=130(分)这就是说,小张行完AC这段路(也就是小李行完CB这段路)用了130分钟,而小李的速度是小张速度的2(=10.8÷5.4)倍,所以小李行完AC这段路只需小张的一半时间(65分)。【解】(留给读者完成,答案是195分钟。)【例3】上午8点8分,小明骑自行车从家里出发, 8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。然后爸爸立即回家,到家后又立即

5、回头去追小明,再追上小明的时候,离家恰好是8千米。问这时是几点几分?【分析】先画出示意图图37-1如下(图37-1中A点表示爸爸第一次追上小明的地方,B点表示他第二次追上小明的地方)。从图37-1上看出,在相同时间(从第一次追上到第二次追上)内,小明从A点到B点,行完(8-4=)4千米;爸爸先从A点到家,再从家到B点,行完(8+4=)12千米。可见,爸爸的速度是小明的(12÷4=)3倍。从而,行完同样多的路程(比如从家到A点),小明所用的时间就是爸爸的3倍。由于小明从家出发8分钟后爸爸去追他,并且在A点追上,所以,小明从家到A点比爸爸多用8分钟。这样可以算出,小明从家到A所用的时间为

6、8÷(3-1)×3=12(分)【解】8÷(3-1)×3×X2=24(分)【例4】甲、乙两车分别从A、B两地同时出发,相向而行。甲车每小时行45千米,乙车每小时行36干米。相遇以后继续以原来的速度前进,各自到达目的地后又立即返回,这样不断地往返行驶。已知途中第二次相遇地点与第三次相遇地点相距40千米。A、B两地相距多远?【分析】我们同样还是画出示意图 37-2(图 37-2中P、M、N分别为第一次、第二次、第三次相遇地点):设 AB两地的距离为“1”。由甲、乙两车的速度可以推知:在相同时通过演示我们还可以知道,第二次相遇时,甲、乙两车一共行完了3

7、个全程(AB+BM+BA+AM);第三次相遇时,它们一共行完了5个全程(AB+BA+AN+BA+AB+BN)。下面,我们只要找出与“40千米”相对应的分率(也就是MN占全程的几分之几)。【解】注意:为了保证计算正确,应当在示意图中标上三次相遇时甲、乙两车行的方向。我们来讨论封闭线路的行程问题。解决封闭路线中的行程问题,仍要抓住“路程=速度×时间”这个基本关系式,搞清路程、速度、时间三者之间的关系。封闭路线中的行程问题,可以转化为非封闭路线中的行程问题来解决。在求两个沿封闭路线相向运动的人或物体相遇次数时,还可以借助图示直观地解决。直线上的来回运动、钟表上的时针分针夹角问题,实质上也是

8、封闭路线中的行程问题。【例5】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【分析】要知道甲还需跑多少米才能回到出发点,实质上只要知道甲最后一次离开出发点又跑出了多少米。我们先来看看甲从一开始到与乙第十次相遇时共跑了多远。不难知道,这段时间内甲、乙两人共跑的路程是操场周长的10倍(300×10=3000米)。因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,由上一讲我们可以知道,这段时间内甲共行1400知道甲还需行100(=300-200)米。1400÷300

9、=4(圈)200(米)300-200=100(米)【例6】如图38-1,A、B是圆的一条直径的两端,小张在A点,小王在B点,同时出发逆时针而行,第一周内,他们在C点第一次相遇,在D点第二次相遇。已知C点离A点80米,D点离B点60米。求这个圆的周长。【分析】这是一个圆周上的追及问题。从一开始运动到第一次相遇,小张行了80米,小王行了“半个圆周长+80”米,也就是在相同的时间内,小王比小张多行了半个圆周长,然后,小张、小王又从C点同时开始前进,因为小王的速度比小张快,要第二次再相遇,只能是小王沿圆周比小张多跑一圈。从第一次相遇到第二次相遇小王比小张多走的路程(一个圆周长)是从开始到第一次相遇小王

10、比小张多走的路程(半个圆周长)的2倍。也就是,前者所花的时间是后者的2倍。对于小张来说,从一开始到第一次相遇行了80米,从第一次相遇到第二次相遇就应该行160米,一共行了240米。这样就可以知道半个圆周长是180(=240-60)米。【解】(80+80×2-60)×2=360(米)【例3】2点整以后,经过多长时间时针与分钟第一次垂直、第三次垂直?【分析】分针的速度比时针快,2点整时,分针在时针后面 2格,要使分针与时针第一次垂直,分针应在时针前面3(=12÷4)格。也就是说,这段时间内分针应比时针多走5格。而分针每小时走12格,时针每小时走1格。后,时针才能与分针

11、第一次垂直。每个小时内时针与分针重合一次垂直两次。时针与分针第三次垂直,分针应比时针多跑(5+12=)17格。所以要经推理原理解数学题,从已知条件到未知的结论,除了计算外,更重要的一个方面就是推理。通常,我们把主要依靠推理来解的数学题称为推理问题。【例1】有一座四层楼(图25-1),每层楼有3个窗户,每个窗户有4块玻璃,分别是白色和蓝色,每个窗户代表一个数字,从左到右表示一个三位数,四个楼层所表示的三位数分别是791,275,362,612。那么,第二层楼代表哪个三位数?【分析】仔细观察图25-1和组成四个三位数的12个数字,“2”出现3次,两次在个位,一次在百位。容易看出图2(a)代表“2”

12、,再从“6”、“7”都出现两次,并根据它们所在的数位以及与“2”的关系,可推知:图25-2中(b)、(c)分别代表“6”和“7”。【解】第二层楼代表612。【例2】有8个球编号是至,其中有6个球一样重,另外两个球都轻1克。为了找出这两个轻球,用天平称了3次。结果如下:第一次 +比+重第二次 +比+轻第三次 +与+一样重,那么,两个轻球的编号是_和_。【分析】从第一次称的结果看,、两球中有一个轻;从第二次称的结果看,、两球中有一个轻;从第三次称的结果看,、三球中有一个轻,、三个球中也有一个轻。综合上面推出的结果,可找出两个轻球。【解】两个轻球的编号是和。说明:在上面的推理中,我们省去了一步,也就

13、是:排除了、与、中都没有轻球的那种可能。因为容易用反证法导出“、”都是轻球”这一结论与第二次称的结果相矛盾。【例3】如图25-3,每个正方体的六个面上分别写着16这六个数字,并且任意两个相对的面上所写的两个数字之和都等于7。把这样的五个正方体一个挨着一个连接起来后,紧挨着的两个面上两个数字之和都等于8。图3中打“?”的这个面上所写的数字是_。【分析】根据题意,容易推知拐弯处的那个正方体的右侧面上写的数字可能是“2”,也可能是“5”。但用反证法可把第1种情况排除。怎样排除?(留给读者完成)【解】打“?”的这面上写着“3”。【例4】德国队、意大利队、荷兰队进行一次足球比赛,每队与另两支队各赛一场。

14、已知:(1)意大利队总进球数是0,并且有一场打了平局;(2)荷兰队总进球数是1,总失球数是2,并且该队恰好胜了一场。按规则:胜一场得2分,平一场得1分,负一场得0分。问德国队得了_分。【分析】由条件(2)知,荷兰队胜了一场,而不进球是不可能胜的,但它的总进球数只有1,说明这场比赛它以10取胜。又因为它总失球数2,所以另一场比赛以02输了。再由条件(1)知:以20赢荷兰队的不可能是意大利队(因为意大利队没有进球),只可能是德国队(记2分)。既然荷兰队输给德国队,那么它胜的一场一定是对意大利队,而且比分为10。德、意两队以00踢平(各记1分)。【解】德国队得了3分。【例5】某楼住着4个女孩和两个男

15、孩,他们的年龄各不相同,最大的10岁,最小的4岁。最大的男孩比最小的女孩大4岁,最大的女孩比最小的男孩也大4岁。最大的男孩多少岁?【分析】最大的孩子(10岁的)不是男孩,就是女孩。如果10岁的孩子是男孩,那么,根据题意,最小的女孩是6岁(6=10-4),从而,最小的男孩是4岁,再根据题意,最大的女孩是8岁(8=44)。这就是说,4个女孩最小的6岁,最大的8岁,其中必有两个女孩同岁,但这与已知条件“他们的年龄各不相同”矛盾。所以10岁的孩子不是男孩,而是女孩。最小(4岁)的孩子也是女孩。【解】最大的男孩是44=8(岁)。在上面的分析中,我们用了这样的性质:如果4个自然数只能取三种不同的值,那么其

16、中必定有两个数相等。【例6】一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个选手都与其余9名选手各赛1盘,每盘棋的胜者得1分,负者得0分,平局双方各得0.5分。结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分。那么,甲、乙、丙三队参加比赛的选手人数各多少?【分析】这次比赛共需比98721=45(盘)。因为每盘比赛双方得分的和都是1分(10=1或0.5×2=1),所以10名选手的总得分为1×45=45(分)。每个队的得分不是整数,就是“a.5”这样的小数。由于乙队选手平均得3.6分,3.6的整数倍不可能是“a.5”这样的小数。所以,乙

17、队的总得分是18或36。但36÷3.6=10,而三个队一共才10名选手(矛盾)。所以,乙队的总分是18分,有选手18÷3.6=5(名)。甲、丙两队共有5名选手。由于丙队的平均分是9分,这个队总分只可能是9分、18分(不可能是27分。因为2718=45,甲队选手总得分为0分),丙队选手人数相应为1名、2名,甲队选手人数相应为4名、3名,经试验,甲队4名选手,丙队1名选手。【例7】将18这8个自然数分成两组,每组四个数,并使两组数之和相等。从A组拿一个数到B组后,B组的数之和将是A组剩下三个数之和的2倍;从B组拿一个数到A组后,B组剩下的三个数之和是A组五个数之【分析】18这8

18、个数之和为36,分成的两组每组4个数之和为36÷2=18。第一次拿数后,A组剩下三数的和为36÷(12)=12,拿出接下去推就容易了,只要把剩下的1、2、4、5、7、8分成两组,其中A组另三个数之和为18-6=12。【解】A组:1,4,6,7;B组:2,3,5,8。教练员提示语在运用试验法(排除法)时,应想办法使试验的次数尽可能少些,这就需要用足题目所给的已知条件,并有意识地寻找别的限制条件。如例2中“0.5的整数倍不是整数,就是小数部分为0.5的带小数”,“3.6的整数倍不可能是a.5这种形式”等。另外,像例2、例3中“总分45分”、“共10名选手”、“A组剩下三数之和为12”等,都是推理的重要根据。逻辑推理问题。解这类题通常要借助于表格。【例8】五封信,信封完全相同,里面分别夹着红、蓝、黄、白、紫五种颜色的卡片。现在把它们按顺序排成一行,让A、B、C、D、E五人猜每只信封内所装卡片的颜色

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论