




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浙大运筹学作业答案第2章1 某公司计划生产两种产品,已知生产单位产品所需的三种原材料的消耗及所获的利润,如下表所示。问应如何安排生产使该工厂获利最多?(建立模型,并用图解法求解)产品1产品2可用的材料数原材料A原材料B原材料C130222306024单位产品获利40万元50万元模型:线性规划1)决策变量:产品1和产品2的产量。设:X为产品1的产量;Y为产品2的产量。X、Y为本问题的决策变量。2)目标函数:获利最多。由于产品1和产品2单位获利分别为40万元和50万元,其产量分别为X和Y,则总获利可计算如下:总获利=40X+50Y3)约束条件:四个。材料A、B、C及产量非负约束。则可得线性规划模型
2、:O.B.Max 40X+50YS.T.X +2Y30;3X+2Y602Y24X,Y0图解: y 30 25 40x+50y=1000 20 3X+2Y=60 40x+50y=800 15 A B 2Y=24 10 C X+2Y=30 5 O D x 5 10 15 20 25 30 在坐标中绘制对约束条件相应的直线,得到满足条件的区域,即位于第一象限的凸多边形OABCD(包括边界)为满足所有约束条件的解的集合。由图可见,可行域内离原点最远点为C,则:x+2y=303x+2y=60解得:x=15;y=7.5即产品1和产品2的产量分别为15和7.5,则获最大利润15*40+7.5*50=975(
3、万元)2.某公司计划生产两种产品,已知生产单位产品所需的两种原材料的消耗和人员需要及所获的利润,如下表所示。问应如何安排生产使该工厂获利最多?(建立模型,并用图解法求解)产品1产品2可用的材料数原材料A原材料B人时10302241224单位产品获利300万元500万元线性规划模型:设产品1、2的产量分别为x、y,则有:O.B.Max300x+500yS.T.x42y123X+2y24x,y0图解: y 13 12 11 3x+2y=24 10 9 8 x=4 7 6 A B 2y=12 5 4 300x+500y=4200 3 2 1 O C x 1 2 3 4 5 6 7 8 9 10 11
4、 在坐标中绘制对约束条件相应的直线,得到满足条件的区域,即位于第一象限的矩形OABC(包括边界)为满足所有约束条件的解的集合。可行域内最远离原点的点为B,则:x=42y=123x+2y=24解得:x=4;y=6即产品1和产品2的产量分别为4和6时,工厂获得最大利润4*300+6*500=4200(万元)3. 下表是一个线性规划模型的敏感性报告,根据其结果,回答下列问题:1)是否愿意付出11元的加班费,让工人加班;2)如果工人的劳动时间变为402小时,日利润怎样变化?3)如果第二种家具的单位利润增加5元,生产计划如何变化?Microsoft Excel 9.0 敏感性报告工作表 ex2-6.xl
5、sSheet1报告的建立: 2001-8-6 11:04:02可变单元格终递减目标式允许的允许的单元格名字值成本系数增量减量$B$15日产量 (件)10020601E+3020$C$15日产量 (件)80020102.5$D$15日产量 (件) 40040205.0$E$15日产量 (件)0-2.0302.01E+30约束终阴影约束允许的允许的单元格名字值价格限制值增量减量$G$6劳动时间 (小时/件) 400840025100$G$7木材 (单位/件) 600460020050$G$8玻璃 (单位/件) 800010001E+302001)由以上敏感性报告可知,劳动时间的影子价格为8元,在劳
6、动时间的增量不超过25小时的条件下,每增加1小时的劳动时间,该厂的利润(目标值)将增加8元,因此,付给工人11元以增加1小时劳动时间是不值得的,将亏损11-8=3(元)。2)劳动时间变为402小时,该增加量在允许的增量(25小时)内,所以劳动时间的影子价格不变,仍为8元,因此,该厂的日利润变为:60+20+40+30+8*(402-400)=166(元),比原来增加16元利润。3)第二种产品增加利润5元,在允许的增量(10元)内,此时最优解不变,因此,生产计划无需变化。4某公司计划生产两种产品,已知生产单位产品所需的三种原材料的消耗及所获的利润,如下表所示。问应如何安排生产使该工厂获利最多?(
7、建立模型,并用图解法求解)(20分)产品1产品2可用的材料数原材料A原材料B原材料C0.60.400.50.10.41200040006000单位产品获利25元10元线性规划模型:O.B.Max25x+10yS.T.0.6x+0.5y120000.4x+0.1y40000.4y6000x,y0图解: y 40000 0.4x+0.1y=4000 30000 25x+10y=300000 20000 A B 0.4y=6000 10000 0.6x+0.5y=12000 C O 5000 10000 15000 20000 x在坐标中绘制对约束条件相应的直线,得到满足条件的区域,即位于第一象限的
8、梯形OABC(包括边界)为满足所有约束条件的解的集合。可行域内最远离原点的点为B,则:0.4y=60000.4x+0.1y=4000解得:x=6250;y=15000即产品1和产品2产量为6250和15000时,工厂获最大利润25*6250+10*15000=306250元5. 线性规划的解有唯一最优解、无穷多最优解、无界解 和无可行解四种。6. 在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量,运费将 增加4 。7.“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错 第3章1 一公司开发出一种新产品,希望通过广告推
9、向市场。它准备用电视、报刊两种广告形式。这两种广告的情况见下表。要求至少30万人看到广告,要求电视广告数不少于8个,至少16万人看到电视广告。应如何选择广告组合,使总费用最小(建立好模型即可,不用求解)。媒体可达消费者数单位广告成本媒体可提供的广告数电视2.3150015报刊1.545025目标:总费用最小,设:电视、报刊投放数分别为x、y线性模型:O.B.min1500x+450yS.T.15x82.3x1600002.3x+1.5y30000025y02医院护士24小时值班,每次值班8小时。不同时段需要的护士人数不等。据统计:序号时段最少人数106106021014703141860418
10如何安排值班,使护士需要量最小。目标:护士人数最小因:每次值班8小时,因此,每班次必跨两个时段,用决策变量Xij表示跨i和j两个时段值班的护士人数,则有:O.B.minX12+X23+X34+X45+X56+X61S.T.X12+X2370X23+X3460X34+X4550X45+X5620X56+X6130X61+ X1260第4章1 对例4.5.1,如果三个工厂的供应量分别是:150,200,80, 两个用户的需求量不变.请重新建立模型,不需要求解.工厂供应量发生量变,则虚节点产生量变。虚节点的净流出量= (150+200+80-300-160)=3
11、0(吨),此时为供应虚节点。所以是供需不平衡的运输最小费用流问题。辅助图示如下A工厂1 D仓库1 F用户1B工厂2C工厂3 E仓库2 G用户2设两个节点间运输量分别为:AD,AE,BD,BE,CD,CE,DF,DG,EF,EG,则可建立模型:O.B.min3AD+AE+BD+BE+CD+0.5CE+6DF+DG+2EF+7EGS.T.AD+AE=150BD+BE=200CD+CE=80DF+DG300EF+EG160AD,AE,BD,BE,CD,CE,DF,DG,EF,EG02 已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。 销地产地B1B2B3产量A159215A231711A
12、362820销量181216虚节点的净流出量= (15+11+20-18-12-16)=0,所以是属于供需平衡的最小费用流问题。设各产至销地的产品量分别为:A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3则可建模型:O.B.min5A1B1+9A1B2+2A1B3+3A2B1+A2B2+7A2B3+6A3B1+2A3B2+8A3B3S.T.A1B1+A1B2+A1B3=15A2B1+A2B2+A2B3=11A3B1+A3B2+A3B3=20A1B1+A2B1+A3B1=18A1B2+A2B2+A3B2=12A1B3+A2B3+A3B3=16A1B1,A1
13、B2,A1B3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B30第5章1考虑4个新产品开发方案A、B、C、D,由于资金有限,不可能都开发。要求A与B至少开发一个,C与D中至少开发一个,总的开发个数不超过三个,预算经费是30万,如何选择开发方案,使企业利润最大(建立模型即可)。方案开发成本利润A1250B846C1967D1561目标:企业利润最大设ABCD四种新产品开发个数分别为:X1X2X3X4,则有O.B.max50X1+46X2+67X3+61X4S.T.X1+X21X3+X41X1+X2+X3+X4312X1+8X2+19X3+15X430第9章1 某厂考虑生产甲、乙两种产
14、品,根据过去市场需求统计如下:方案自然状态概率旺季0.3淡季0.2正常0.5甲乙8103267分别用乐观主义、悲观主义和最大期望值原则进行决策,应该选择哪种产品?乐观主义:在最乐观的自然状态下具有最大效益值的方案为最佳方案甲,旺季的最大效益值=0.3×8=2.4乙,旺季的最大效益值=0.3×10=3所以,应该选择方案乙。悲观主义:认为在最悲观的自然状态下具有最大效益值的方案为最佳方案1, 淡季的最大效益值=0.2×3=0.62, 淡季的最大效益值=0.2×2=0.4所以,应该选择方案甲。最大期望值:各方案的年利润期望值应等于该方案在三个自然状态下的年利润
15、与该自然状态发生的概率的乘积之和。因此,可分别计算出方案甲和乙的年利润期望值E甲和E乙。E甲=0.3×8+0.2×3+0.5×6=6E乙=0.3×10+0.2×2+0.5×7=6.9所以,应该选择方案乙。2 某公司准备生产一种新产品,但该产品的市场前景不明朗。公司一些领导认为应该是先做市场调查,以确定市场的大小,再决定是否投入生产和生产规模的大小,而另一些领导认为没有必要花钱与浪费时间进行市场调查,应立即投入生产。根据估计,市场调查的成本是2000元,市场调查结果好的概率是0.6,而市场调查结果好时市场需求大的概率是0.8,市场调查结
16、果不好时市场需求大的概率是0.3.在不同市场前景下,不同生产规模下企业的利润如下表.请你分析这个问题的决策过程,并通过建立概念模型(决策中的主要因素),用决策树方法辅助决策。市场规模大市场规模小生产规模大20000-5000生产规模小1000010000这是一个具事前信息的多级决策问题。分析:决策中有三个方案:(1)先做市场调查,(2)不做市场调查即投入生产,(3)不生产。估计调查结果好的概率为0.6,不好的为0.4。调查成本2000元,可能出现两种市场调查结果:好,市场需求大概率为0.8;不好,市场需求大概率为0.3。此外,有两种生产规模供选择,生产规模大和生产规模小。步骤:(1)估计自然状态的先验概率P(s)为:好,0.6;不好,0.4(2)估算客观自然状态为sj时,调查结果为Ik的条件概率:好时,市场需求大的概率为0.8;不好时,市场需求大的概率为0.3(3)建立决策树,用各自然状态的后验概率代替先验概率,运用决策树方法从右向左计算各方案的期望效益并选择出最优方案。好0.610000生产规模大2000010000不好0.4不调查即投入生产-5000好0.610000生产规模小1000010000不好0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 调料市场投资协议
- 文化节庆合作协议
- 室内装饰色彩选择协议
- 绢纺和丝织的绿色组织与管理考核试卷
- 聚苯并噻吩共聚物纤维单体制备考核试卷
- 企业客户关系管理与维护考核试卷
- 稀有金属加工质量改进项目评估与验收标准制定考核试卷
- 中学生交通安全教育
- 文明礼仪伴我行-中学生行为养成教育主题班会
- 护患沟通技巧课件
- 2025-2030中国干燥剂行业发展分析及发展前景与投资研究报告
- 环保安全知识课件
- 比例尺单元测试卷及答案
- 氩弧焊基本知识课件
- 《广西壮族自治区基层工会经费收支管理实施办法》修订解读
- 中职语文教学大赛教学实施报告范文与解析
- 山东临沂市罗庄区兴罗投资控股有限公司招聘笔试题库2025
- 北京市朝阳区2025届高三下学期一模试题 数学 含答案
- 食品工厂5S管理
- 大数据在展览中的应用-全面剖析
- 食品企业危机应对措施
评论
0/150
提交评论