高中数学(北师大版)选修1-2第四章 数系的扩充与复 数的引入 第2课时 复数代数形式的加减运算及其几何意义_第1页
高中数学(北师大版)选修1-2第四章 数系的扩充与复 数的引入 第2课时 复数代数形式的加减运算及其几何意义_第2页
高中数学(北师大版)选修1-2第四章 数系的扩充与复 数的引入 第2课时 复数代数形式的加减运算及其几何意义_第3页
高中数学(北师大版)选修1-2第四章 数系的扩充与复 数的引入 第2课时 复数代数形式的加减运算及其几何意义_第4页
高中数学(北师大版)选修1-2第四章 数系的扩充与复 数的引入 第2课时 复数代数形式的加减运算及其几何意义_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第2课时复数代数形式的加减运算及其几何意义1.理解复数代数形式的加减运算规律.2.复数的加减与向量的加减的关系.重点:正确理解复数的加减运算,复数加减运算的几何意义.难点:对比复数加减法与向量加减法的异同,从而理解复数的几何意义.实数可以进行加减运算,并且具有丰富的运算律,其运算结果仍是实数;多项式也有相应的加减运算和运算律;对于引入的复数,其代数形式类似于一个多项式,当然它也应有加减运算,并且也有相应的运算律.问题1:依据多项式的加法法则,得到复数加法的运算法则.设z1=a+bi,z2=c+di是任意两个复数,那么(a+bi)+(c+di)=(a+c)+(b+d)i, 很明显,两个

2、复数的和仍然是一个确定的复数.问题2: 复数的加法满足交换律、结合律.即z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3). 问题3:利用向量加法讨论复数加法的几何意义向量加法遵循平行四边形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相加.故复数相加就是实部与虚部分别相加得到一个新的复数.问题4:如何理解复数的减法?复数减法是复数加法的逆运算.向量减法遵循三角形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相减.故复数相减就是实部与虚部分别相减得到一个新的复数.十八世纪末十九世纪初,著名的德国数学家高斯在证明代数基本定理“任何一元n次方程在复数集内有且仅

3、有n个根”时,就应用并论述了卡尔丹所设想的新数,并首次引进了“复数”这个名词,把复数与平面内的点一一对应起来,创立了复平面,依赖于平面内的点或有向线段(向量)建立了复数的几何基础.这样历经300年的努力,数系从实数系到复数系的扩张才基本完成,复数才被人们广泛承认和使用.1.设z1=3-4i,z2=-2+3i,则z1-z2在复平面内对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限【解析】(3-4i)-(-2+3i)=5-7i.【答案】D2.(2-i)+(3+i)+(4+i)+(5+i)-i(其中i为虚数单位)等于().A.10B.10+2iC.14D.14+2i【解析】(2-i

4、)+(3+i)+(4+i)+(5+i)-i=2+3+4+5+(-+1+-)i=14.【答案】C3.复数z1=9+3i,z2=-5+2i,则z1-z2=. 【解析】z1-z2=(9+3i)-(-5+2i)=14+i.【答案】14+i4.已知复数z1=7-6i,z1+z2=-4+3i.(1)求z2;(2)求z1-2z2.【解析】(1)z2=(z1+z2)-z1=(-4+3i)-(7-6i)=-11+9i.(2)z1-2z2=(7-6i)-2(-11+9i)=7-6i+22-18i=29-24i.复数代数形式的加减法运算(1)z1=2+3i,z2=-1+2i,求z1+z2,z1-z2;(2

5、)计算:(+i)+(2-i)-(-i);(3)计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+(-2012+2013i)+(2013-2014i).【方法指导】依据复数代数形式的加减运算法则以及运算律求解.【解析】(1)z1+z2=2+3i+(-1+2i)=1+5i,z1-z2=2+3i-(-1+2i)=3+i.(2)+i+(2-i)-(-i)=(+2-)+(-1+)i=1+i.(3)(法一)原式=(1-2)+(3-4)+(2011-2012) +2013+(-2+3)+(-4+5)+(-2012+2013)-2014i=(-1006+2013)+(1006-2014)i=1

6、007-1008i.(法二)(1-2i)+(-2+3i)=-1+i,(3-4i)+(-4+5i)=-1+i,(2011-2012i)+(-2012+2013i)=-1+i,将以上各式(共1006个)相加可知:原式=1006(-1+i)+(2013-2014i)=1007-1008i.【小结】几个复数相加减,运算法则为这些复数的所有实部相加减,所有虚部相加减.第(3)小题的解法一是从整体上把握,将计算分实部和虚部进行,有机构造特殊数列的和进而求得结果.解法二是从局部入手,抓住了式中相邻两项和的特点,恰当地分组使计算得以简化.复数代数形式加减运算的几何意义在复平面内,A、B、C分别对应复数z1=1

7、+i,z2=5+i,z3=3+3i,以AB、AC为邻边作一个平行四边形ABDC,求D点对应的复数z4及AD的长.【方法指导】根据复数加减运算的几何意义可以把复数的加减运算转化为向量的坐标运算.【解析】如图所示:对应复数z3-z1,对应复数z2-z1,对应复数z4-z1.由复数加减运算的几何意义得=+,z4-z1=(z2-z1)+(z3-z1),z4=z2+z3-z1=(5+i)+(3+3i)-(1+i)=7+3i,AD的长为|=|z4-z1|=|(7+3i)-(1+i)|=|6+2i|=2.【小结】利用向量进行复数的加减运算时,同样满足平行四边形法则和三角形法则.复数加减法运算的几何意义为应用

8、数形结合思想解决复数问题提供了可能.复数加减运算的综合应用已知实数a>0,b>0,复数z1=a+5i,z2=3-bi,|z1|=13,|z2|=5,求z1+z2.【方法指导】利用两复数的模,可求得a,b的值,再求z1+z2.【解析】由题意得z1=12+5i,z2=3-4i,z1+z2=15+i.【小结】本题结合了复数的模与复数的加法,表面看着难,其实难度不大.复数z1=2+3i,z2=4-5i,z3=-6i,求z1+z2-z3,并说明z1+z2-z3在复平面内对应的点所在的象限.【解析】z1+z2-z3=(2+3i)+(4-5i)-(-6i)=6+4i,z1+z2-z3在复平面内对

9、应的点为(6,4),在第一象限.如图所示,平行四边形OABC的顶点O、A、C分别表示0、3+2i、-2+4i.求:(1)表示的复数;(2)表示的复数;(3)表示的复数.【解析】(1)因为=-,所以表示的复数为-3-2i.(2)因为=-,所以表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为=+,所以表示的复数为(3+2i)+(-2+4i)=1+6i.已知实数aR,复数z1=a+2-3ai,z2=6-7i,若z1+z2为纯虚数,求a的值.【解析】z1+z2=(a+2-3ai)+(6-7i)=a+8-(3a+7)i,z1+z2为纯虚数,a=-8.1.复数z1=-3+4i,z2=6-7i

10、,则z1+z2等于().A.3-3iB.3+3iC.-9+11iD.-9-3i【答案】A2.复数(3+i)m-(2+i)对应的点在第三象限内,则实数m的取值范围是().A.m<B.m<1C.<m<1D.m>1【解析】(3+i)m-(2+i)=(3m-2)+(m-1)i,点(3m-2,m-1)在第三象限,即m<.【答案】A3.复数z1=-2+3i,z2=4+3i,则z1-z2=. 【解析】z1-z2=(-2+3i)-(4+3i)=-6.【答案】-64.已知aR,复数z1=2+(a+2)i,z2=a2+2a-1+3i,若z1+z2为实数,求z1-z2.

11、【解析】z1+z2=a2+2a+1+(a+5)i,aR,z1+z2为实数,a+5=0,a=-5,z1=2-3i,z2=14+3i,z1-z2=-12-6i.在复平面内,A,B,C三点对应的复数分别为1,2+i,-1+2i.(1)求向量,对应的复数;(2)判断ABC的形状.【解析】(1)=-=(2+i)-1=1+i,=-=(-1+2i)-1=-2+2i,=-=(-1+2i)-(2+i)=-3+i,所以,对应的复数分别为1+i,-2+2i,-3+i.(2)因为|2=10,|2=8,|2=2,所以有|2=|2+|2,所以ABC为直角三角形.    1.向量对应

12、的复数是5-4i,向量对应的复数是-5+4i,则+对应的复数是().A.-10+8iB.10-8iC.0D.10+8i【解析】+对应的复数为5-4i+(-5+4i)=0.【答案】C2.复数z1=1-5i,z2=-2+i,则z1-z2在复平面内对应的点在().A.第一象限B.第二象限C.第三象限D.第四象限【解析】z1-z2=(1-5i)-(-2+i)=3-6i,对应的点为(3,-6),该点位于第四象限.【答案】D3.复数z1=5-12i,z2=4+7i,则z1-z2=. 【解析】z1-z2=(5-12i)-(4+7i)=1-19i.【答案】1-19i4.已知z1=(3x+y)+(y-

13、4x)i,z2=(4y-2x)-(5x+3y)i(x,yR).设z=z1-z2且z=13-2i,求z1,z2.【解析】z=z1-z2=(3x+y)+(y-4x)i-(4y-2x)-(5x+3y)i=(3x+y)-(4y-2x)+(y-4x)+(5x+3y)i=(5x-3y)+(x+4y)i,又z=13-2i,且x,yR,则解得故z1=(3×2-1)+(-1-4×2)i=5-9i,z2=4×(-1)-2×2-5×2+3×(-1)i=-8-7i.5.复平面内点A,B,C对应的复数分别为i,1,4+2i,由ABCD按逆时针顺序作平行四边形A

14、BCD,则|等于().A.5B.C.D.【解析】如图所示,ABCD四个顶点对应复数分别为z1=i,z2=1,z3=4+2i,z4,则有=+,=(z1-z2)+(z3-z2)=2+3i,故|=.【答案】B6.已知复数z1,z2,有|z1|=5,|z2|=12,|z1+z2|=13,则|z1-z2|为().A.8B.10C.12D.13【解析】利用向量结合复数分析可知构成的平行四边形为矩形,故对角线相等.【答案】D7.已知实数a>0,复数z1=a+2i,z2=3+5i,|z1-z2|=5,则a的值为. 【解析】z1-z2=a-3-3i(aR),|z1-z2|=5,=25,a-3=&

15、#177;4,又a>0,a=7.【答案】78.已知f(z)=2z+2-i,z0=1+2i,f(z0-z1)=6-3i,zC,求复数z1,f(|z0+z1|).【解析】由已知得2z0-2z1+2-i=6-3i,z0=1+2i,2+4i-2z1+2-i=6-3i,即4+3i-2z1=6-3i,2z1=(4+3i)-(6-3i)=(4-6)+(3+3)i=-2+6i,z1=-1+3i,|z0+z1|=|(1+2i)+(-1+3i)|=|5i|=5,f(|z0+z1|)=f(5)=2×5+2-i=12-i.9.已知复数z的模为2,则|z-i|的最大值为. 【解析】(法一)|z|=2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论