高中数学北师大版选修2-3学案:2.3.2 独立事件 Word版含解析_第1页
高中数学北师大版选修2-3学案:2.3.2 独立事件 Word版含解析_第2页
高中数学北师大版选修2-3学案:2.3.2 独立事件 Word版含解析_第3页
高中数学北师大版选修2-3学案:2.3.2 独立事件 Word版含解析_第4页
高中数学北师大版选修2-3学案:2.3.2 独立事件 Word版含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第2课时独立事件1理解相互独立事件的定义及意义(重点)2掌握相互独立事件概率乘法公式(重点)3能综合运用互斥事件的概率加法公式及相互独立事件的概率乘法公式解决一些简单的实际问题(难点)基础·初探教材整理独立事件阅读教材P44P45“练习”以上部分,完成下列问题1相互独立事件的概率(1)一般地,对两个事件A,B,如果P(AB)_,则称A,B相互独立(2)如果事件A1,A2,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2An)_.【答案】(1)P(A)·P(B)(2)P(A1)P(A2)P(An)2相互独立事件的性质若A与B是相互独立事件,

2、则A与_,B与_,_与也相互独立【答案】1下列说法正确的有_(填序号)对事件A和B,若P(B|A)P(B),则事件A与B相互独立;若事件A,B相互独立,则P()P()×P();如果事件A与事件B相互独立,则P(B|A)P(B);若事件A与B相互独立,则B与相互独立【解析】若P(B|A)P(B),则P(AB)P(A)·P(B),故A,B相互独立,所以正确;若事件A,B相互独立,则、也相互独立,故正确;若事件A,B相互独立,则A发生与否不影响B的发生,故正确;B与相互对立,不是相互独立,故错误【答案】2甲、乙两人投球命中率分别为,则甲、乙两人各投一次,恰好命中一次的概率为_【解

3、析】事件“甲投球一次命中”记为A,“乙投球一次命中”记为B,“甲、乙两人各投一次恰好命中一次”记为事件C,则CAB且A与B互斥,P(C)P(AB)P(A)P()P()P(B)××.【答案】质疑·手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:小组合作型事件相互独立性的判定判断下列各对事件是否是相互独立事件(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取

4、出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”【精彩点拨】(1)利用独立性概念的直观解释进行判断(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断(3)利用事件的独立性定义式判断【自主解答】(1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;若前

5、一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件(3)记A:出现偶数点,B:出现3点或6点,则A2,4,6,B3,6,AB6,P(A),P(B),P(AB).P(AB)P(A)·P(B),事件A与B相互独立判断两个事件独立性的方法:(1)利用相互独立事件的定义(即P(AB)P(A)·P(B),可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判定两个事件是否为相互独立事件,也可以从定性的角度进行分析,也就是看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相

6、互独立事件;有影响就不是相互独立事件.再练一题1甲、乙两名射手同时向一目标射击,设事件A:“甲击中目标”,事件B:“乙击中目标”,则事件A与事件B()A相互独立但不互斥B互斥但不相互独立C相互独立且互斥D既不相互独立也不互斥【解析】对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A与B相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A与B可能同时发生,所以事件A与B不是互斥事件故选A.【答案】A相互独立事件同时发生的概率面对非洲埃博拉病毒,各国医疗科研机构都在研究疫苗,现有A,B,C三个独立的研究机构在一定的时期内能研制出疫苗的概率分别是,.求:(1)他们都研

7、制出疫苗的概率;(2)他们都失败的概率;(3)他们能够研制出疫苗的概率【精彩点拨】【自主解答】令事件A,B,C分别表示A,B,C三个独立的研究机构在一定时期内成功研制出该疫苗,依题意可知,事件A,B,C相互独立,且P(A),P(B),P(C).(1)他们都研制出疫苗,即事件ABC同时发生,故P(ABC)P(A)P(B)P(C)××.(2)他们都失败即事件 同时发生故P( )P()P()P()(1P(A)(1P(B)(1P(C)××.(3)“他们能研制出疫苗”的对立事件为“他们都失败”,结合对立事件间的概率关系可得所求事件的概率P1P( )1.1求相互独立

8、事件同时发生的概率的步骤:(1)首先确定各事件之间是相互独立的;(2)确定这些事件可以同时发生;(3)求出每个事件的概率,再求积2使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们能同时发生再练一题2一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率【解】记“第1次取出的2个球都是白球”的事件为A,“第2次取出的2个球都是红球”的事件为B,“第1次取出的2个球中1个是白球、1个是红球

9、”的事件为C,很明显,由于每次取出后再放回,A,B,C都是相互独立事件(1)P(AB)P(A)P(B)××.故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是.(2)P(CA)P(C)P(A)··.故第1次取出的2个球中1个是白球、1个是红球,第2次取出的2个球都是白球的概率是.探究共研型事件的相互独立性与互斥性探究你能归纳出相互独立事件与互斥事件的区别吗?【提示】相互独立事件与互斥事件的区别相互独立事件互斥事件条件事件A(或B)是否发生对事件B(或A)发生的概率没有影响不可能同时发生的两个事件符号相互独立事件A,B同时发生,记作:AB互斥

10、事件A,B中有一个发生,记作:AB(或AB)计算公式P(AB)P(A)P(B)P(AB)P(A)P(B)红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率【精彩点拨】弄清事件“红队有且只有一名队员获胜”与事件“红队至少两名队员获胜”是由哪些基本事件组成的,及这些事件间的关系,然后选择相应概率公式求值【自主解答】设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则,分别表示甲不胜A、乙不胜B、丙不胜

11、C的事件因为P(D)0.6,P(E)0.5,P(F)0.5,由对立事件的概率公式知P()0.4,P()0.5,P()0.5.(1)红队有且只有一名队员获胜的事件有D ,E ,F,以上3个事件彼此互斥且独立所以红队有且只有一名队员获胜的概率为P1P(D E F)P(D)P(E )P(F)0.6×0.5×0.50.4×0.5×0.50.4×0.5×0.50.35.(2)法一:红队至少两人获胜的事件有:DE ,DF,EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为PP(DE )P(D F)P(EF

12、)P(DEF)0.6×0.5×0.50.6×0.5×0.50.4×0.5×0.50.6×0.5×0.50.55.法二:“红队至少两人获胜”与“红队最多一人获胜”为对立事件,而红队都不获胜为事件 ,且P( )0.4×0.5×0.50.1.红队至少两人获胜的概率为P21P1P( )10.350.10.55.1本题(2)中用到直接法和间接法当遇到“至少”“至多”问题可以考虑间接法2求复杂事件的概率一般可分三步进行:(1)列出题中涉及的各个事件,并用适当的符号表示它们;(2)理清各事件之间的关系,恰当地

13、用事件间的“并”“交”表示所求事件;(3)根据事件之间的关系准确地运用概率公式进行计算再练一题3(2016·邯郸高二检测)某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s内(称为合格)的概率分别为,若对这三名短跑运动员的100米跑的成绩进行一次检测,则求:(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大【解】记甲、乙、丙三人100米跑成绩合格分别为事件A,B,C,显然事件A,B,C相互独立,则P(A),P(B),P(C).设恰有k人合格的概率为Pk(k0,1,2,3)(1)三人都合格的概率:P3(ABC)

14、P(A)·P(B)·P(C)××.(2)三人都不合格的概率:P0()P()·P()·P()××.(3)恰有两人合格的概率:P2P(AB)P(AC)P(BC)××××××.恰有一人合格的概率:P11P0P2P31.综合(1)(2)可知P1最大所以出现恰有一人合格的概率最大构建·体系1抛掷3枚质地均匀的硬币,A既有正面向上又有反面向上,B至多有一个反面向上,则A与B的关系是()A互斥事件B对立事件C相互独立事件D不相互独立事件【解析】由已知,有P(A

15、)1,P(B)1,P(AB),满足P(AB)P(A)P(B),则事件A与事件B相互独立,故选C.【答案】C2投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A. B.C. D.【解析】P(A),P(B),P(),P().又A,B为相互独立事件,P()P()P()×.A,B中至少有一件发生的概率为1P()1.【答案】C3明天上午李明要参加“青年文明号”活动,为了准时起床,他用甲乙两个闹钟叫醒自己,假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率为0.90,则两个闹钟至少有一个准时响的概率是_【

16、解析】设两个闹钟至少有一个准时响的事件为A,则P(A)1(10.80)(10.90)10.20×0.100.98.【答案】0.984加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为,且各道工序互不影响,则加工出来的零件的次品率为_. 【导学号:62690037】【解析】加工出来的零件的正品率是××,因此加工出来的零件的次品率为1.【答案】5某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率【解】设甲、乙、丙当选的事件分别为A,B,C,则有P(A),P(B),P(

17、C).(1)因为事件A,B,C相互独立,所以恰有一名同学当选的概率为P(A)P(B)P(C)P(A)·P()·P()P()·P(B)·P()P()·P()·P(C)××××××.(2)至多有两人当选的概率为1P(ABC)1P(A)·P(B)·P(C)1××.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)学业达标一、选择题1有以下三个问题:掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:

18、“出现的点数为偶数”;袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”这三个问题中,M,N是相互独立事件的有()A3个B2个C1个D0个【解析】中,M,N是互斥事件;中,P(M),P(N).即事件M的结果对事件N的结果有影响,所以M,N不是相互独立事件;中,P(M),P(N),P(MN),P(MN)P(M)P(N),因此M,N是相互独立事件【答案】C2(2016·东莞调研)从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一

19、个球,则表示()A2个球不都是红球的概率B2个球都是红球的概率C至少有1个红球的概率D2个球中恰有1个红球的概率【解析】分别记从甲、乙袋中摸出一个红球为事件A,B,则P(A),P(B),由于A,B相互独立,所以1P()P()1×.根据互斥事件可知C正确【答案】C3甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军若两队胜每局的概率相同,则甲队获得冠军的概率为()A. B. C. D.【解析】问题等价为两类:第一类,第一局甲赢,其概率P1;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P2×.故甲队获得冠军的概率为P1P2.【答案】A

20、4.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2­3­3所示假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是()图2­3­3A. B. C. D.【解析】青蛙跳三次要回到A叶有两条途径:第一条:按ABCA,P1××;第二条,按ACBA,P2××.所以跳三次之后停在A叶上的概率为PP1P2.【答案】A5如图2­3­4所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇

21、数所在区域的概率是()图2­3­4A. B. C. D.【解析】“左边圆盘指针落在奇数区域”记为事件A,则P(A),“右边圆盘指针落在奇数区域”记为事件B,则P(B),事件A,B相互独立,所以两个指针同时落在奇数区域的概率为×,故选A.【答案】A二、填空题6(2016·铜陵质检)在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为_. 【导学号:62690038】【解析】“从200个螺杆中,任取一个是A型”记为事件B.“从240个螺母中任取一个是A型”记为事件C,则P(B),

22、P(C).P(A)P(BC)P(B)·P(C)·.【答案】7三人独立地破译一份密码,他们能单独译出的概率分别为,假设他们破译密码是彼此独立的,则此密码被破译的概率为_【解析】用A,B,C分别表示“甲、乙、丙三人能破译出密码”,则P(A),P(B),P(C),且P( )P()P()P()××.所以此密码被破译的概率为1.【答案】8同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响

23、,则同学甲得分不低于300分的概率是_【解析】设“同学甲答对第i个题”为事件Ai(i1,2,3),则P(A1)0.8,P(A2)0.6,P(A3)0.5,且A1,A2,A3相互独立,同学甲得分不低于300分对应于事件A1A2A3A12A31A2A3发生,故所求概率为PP(A1A2A3A12A31A2A3)P(A1A2A3)P(A12A3)P(1A2A3)P(A1)P(A2)P(A3)P(A1)P(2)·P(A3)P(1)P(A2)P(A3)0.8×0.6×0.50.8×0.4×0.50.2×0.6×0.50.46【答案】0.

24、46三、解答题9根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率【解】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买(1)P(A)0.5,P(B)0.3,CAB,P(C)P(AB)P(A)P(B)0.8.(2)D

25、,P(D)1P(C)10.80.2,P(E)0.8×0.2×0.80.8×0.8×0.20.2×0.8×0.80.384.10某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求的分布列【解】设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)0.4,P(A2)0.5,P(A3)0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数

26、可能取值为3,2,1,0,所以的可能取值为1,3.则P(3)P(A1·A2·A3)P(1·2·3)P(A1)·P(A2)·P(A3)P(1)·P(2)·P(3)2×0.4×0.5×0.60.24.P(1)10.240.76.所以分布列为:13P0.760.24能力提升1设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A. B. C. D.【解析】由P(A )P(B ),得P(A)P()P(B)·P(),即P(A)1P(B)P(B)1P(A),P(A)P(B)又P( ),P()P(),P(A).【答案】D2.三个元件T1,T2,T3正常工作的概率分别为,且是互相独立的将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2­3­5的电路中,电路不发生故障的概率是()图2­3­5A. B. C. D.【解析】记“三个元件T1,T2,T3正常

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论