表面积与体积_第1页
表面积与体积_第2页
表面积与体积_第3页
表面积与体积_第4页
表面积与体积_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北京奥运会场馆图38.9亿赫尔佐格赫尔佐格德梅隆德梅隆“鸟巢(nest)”30亿问题提出问题提出 1. 1.对于空间几何体,我们分别从结对于空间几何体,我们分别从结构特征和视图两个方面进行了研究,为构特征和视图两个方面进行了研究,为了度量一个几何体的大小,我们还须进了度量一个几何体的大小,我们还须进一步学习几何体的表面积和体积一步学习几何体的表面积和体积. . 2. 2.柱、锥、台、球是最基本、最简柱、锥、台、球是最基本、最简单的几何体,研究空间几何体的表面积单的几何体,研究空间几何体的表面积和体积,应以柱、锥、台、球的表面积和体积,应以柱、锥、台、球的表面积和体积为基础和体积为基础. .那么

2、如何求柱、锥、台、那么如何求柱、锥、台、球的表面积和体积呢?球的表面积和体积呢?复习回顾复习回顾矩形面积公式:矩形面积公式:Sab三角形面积公式:三角形面积公式:12Sah圆面积公式:圆面积公式:2Sr圆周长公式:圆周长公式:2Cr扇形面积公式:扇形面积公式:12Srl梯形面积公式:梯形面积公式:1()2Sab h扇环面积公式:扇环面积公式:1()()2Sllrr(一)柱体、锥体、台体的表面积(一)柱体、锥体、台体的表面积 思考思考: :面积是相对于平面图形而言的,体面积是相对于平面图形而言的,体积是相对于空间几何体而言的积是相对于空间几何体而言的. .面积面积: :平面图形所占平面的大小平面

3、图形所占平面的大小 体积体积: :几何体所占空间的大小几何体所占空间的大小 表面积:表面积:几何体表面面积的大小几何体表面面积的大小怎样理解棱柱、棱锥、棱台的表面积?怎样理解棱柱、棱锥、棱台的表面积?一般地一般地, ,多面体的表面积就是各个面的面积之和多面体的表面积就是各个面的面积之和表面积表面积= =侧面积侧面积+ +底面积底面积 在初中已经学过了正方体和长方体的表面积,你在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?知道正方体和长方体的展开图与其表面积的关系吗?几何体表面积几何体表面积展开图展开图平面图形面积平面图形面积空间问题空间问题平面问题平面

4、问题 正方体、长方体是由多个平面围成的几何体,它正方体、长方体是由多个平面围成的几何体,它们的表面积就是各个面的面积的和们的表面积就是各个面的面积的和 因此,我们可以把它们展成平面图形,利用平面因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积图形求面积的方法,求立体图形的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的几何棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?体,它们的展开图是什么?如何计算它们的表面积? 棱柱的侧面展开图是什么?如何计算它的表棱柱的侧面展开图是什么?如何计算它的表面积?面积?h正棱柱的侧面展开图

5、正棱柱的侧面展开图 棱锥的侧面展开图是什么?如何计算它的表棱锥的侧面展开图是什么?如何计算它的表面积?面积?/h/h正棱锥的侧面展开图正棱锥的侧面展开图 棱锥的侧面展开图是什么?如何计算它的表棱锥的侧面展开图是什么?如何计算它的表面积?面积?侧面展开正棱锥的侧面展开图正棱锥的侧面展开图 棱台的侧面展开图是什么?如何计算它的表棱台的侧面展开图是什么?如何计算它的表面积?面积?侧面展开hh正棱台的侧面展开图正棱台的侧面展开图棱柱棱柱的侧面展开图是由的侧面展开图是由平行四边形平行四边形组成的平面图组成的平面图形,形,棱锥棱锥的侧面展开图是由的侧面展开图是由三角形三角形组成的平面图组成的平面图形,形,

6、棱台棱台的侧面展开图是由的侧面展开图是由梯形梯形组成的平面图形。组成的平面图形。这样,求它们的这样,求它们的表面积表面积的问题就可转化为求的问题就可转化为求平行平行四边形、三角形、梯形的面积四边形、三角形、梯形的面积问题。问题。 棱柱、棱锥、棱台都是由多个平面图形围成的几何棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的体,它们的侧面展开图还是平面图形,计算它们的表面表面积就是计算它的各个侧面面积和底面面积之和积就是计算它的各个侧面面积和底面面积之和h 例例1 已知棱长为已知棱长为a,各面均为等边三角形的四面,各面均为等边三角形的四面体体S-ABC,求它

7、的表面积,求它的表面积 DBCAS 分析:四面体的展开图是由四个全等的正三角形分析:四面体的展开图是由四个全等的正三角形组成组成因为因为BC=a,aSBSD2360sin所以:所以: 243232121aaaSDBCSABC因此,四面体因此,四面体S-ABC 的表面积的表面积交交BC于点于点D解:先求解:先求 的面积,过点的面积,过点S作作 ,ABCBCSD .已知棱长为已知棱长为a,底面为正方形,各,底面为正方形,各侧面均为等边三角形的四棱锥侧面均为等边三角形的四棱锥S-ABCD,求它的表面积。,求它的表面积。 )31 (4解:已知解:已知底面为正方形,底面为正方形,各侧各侧 面面 均均 为

8、为 等等 边边 三角三角形的四棱锥形的四棱锥S-ABCD的表的表面积为面积为 ,求它,求它的棱长。的棱长。 .已知三棱台的上下底面均为正三已知三棱台的上下底面均为正三角形,边长分别为角形,边长分别为3cm和和9cm,侧面是全等的等腰梯形,侧棱长侧面是全等的等腰梯形,侧棱长为为5cm,求它的表面积。,求它的表面积。OOr)(2222lrrrlrS圆柱表面积lr2圆柱的侧面展开图是矩形圆柱的侧面展开图是矩形圆锥的侧面展开图是扇形圆锥的侧面展开图是扇形)(2lrrrlrS圆锥表面积r2lOr 参照圆柱和圆锥的侧面展开图,试想象圆台的侧参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么面展开图是

9、什么 )(22rllrrrS圆台表面积r2lOrO r2 r圆台的侧面展开图是扇环圆台的侧面展开图是扇环圆柱、圆锥、圆台表面积侧面展开图侧侧面积表面积rllrS22侧rllrS221侧)(2lrrS)(lrrS1(2 2)2( )Srrlrr l侧)(22rllrrrSlOrO rlOrlOOr)(2lrrS柱)(lrrS锥)(22rllrrrS台 圆柱、圆锥、圆台三者的表面积公式之间有圆柱、圆锥、圆台三者的表面积公式之间有什么关系?什么关系?rr上底扩大上底扩大r0上底缩小上底缩小 例例2 2 如图,一个圆台形花盆盆口直径如图,一个圆台形花盆盆口直径20 cm20 cm,盆,盆底直径为底直径

10、为15cm15cm,底部渗水圆孔直径为,底部渗水圆孔直径为1.5 cm1.5 cm,盆壁长,盆壁长15cm15cm那么花盆的表面积约是多少平方厘米(那么花盆的表面积约是多少平方厘米( 取取3.143.14,结果精确到,结果精确到1 1 )?)?2cmcm15cm20cm15 解:由圆台的表面积公式得解:由圆台的表面积公式得 花盆的表面积:花盆的表面积:2225 . 11522015215215S)(9992cm答:花盆的表面积约是答:花盆的表面积约是999 999 2cm练习题:练习题:1. 将一个边长为将一个边长为a的正方体,切成的正方体,切成27个全个全等的小正方体,则表面积增加了(等的小

11、正方体,则表面积增加了( ) (A)6a2 (B)12a2 (C)18a2 (D)24a2B2. 在正方体的八个顶点中,有四个恰好是在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为(正四面体的表面积的比值为( ) (A) (B) (C) (D)236233B 3. 侧面都是直角三角形的正三棱锥,侧面都是直角三角形的正三棱锥,底面边长为底面边长为a,该三棱锥的全面积是,该三棱锥的全面积是( ) (A) (B) (C) (D)2334a234a2332a233()24aA4. 球内接正方体的表面积与球的表面积球内接正

12、方体的表面积与球的表面积的比为(的比为( ) (A)2: (B)3: (C)4: (D)6:A . 已知圆锥的底面半径为2cm,母线长为3cm。它的展开图的形状为_。该图形的弧长为_cm,半径为_cm,所以圆锥的侧面积为_cm2。扇形634扇形面积公式rlS21 1.有一张白纸,宽为4,长为12,现在将白纸卷成圆柱,求它的底面半径。 2.已知圆台的上底面半径为r =2,下底面半径为r =4,母线长为l =5,求它的侧面积,两底面面积之和。 3.已知圆台的上底面半径为r =1,且侧面积等于两底面面积之和,母线长为l =5/2,求下底面半径r 。( )Srrl侧圆台侧面积公式圆台侧面积公式各面面积

13、之和各面面积之和rr0 r展开图展开图22()Srrr lrl 圆台圆台圆柱圆柱)(2lrrS)(lrrS圆锥圆锥空间问题空间问题“平面平面”化化棱柱、棱锥、棱柱、棱锥、棱台棱台圆柱、圆锥、圆柱、圆锥、圆台圆台所用的数学思想:所用的数学思想:柱体、锥体、台体的表面积柱体、锥体、台体的表面积思考:思考:取一些书堆放在桌面上取一些书堆放在桌面上( (如图所示如图所示) ) ,并改变它们的放置方法,观察改变前后的体并改变它们的放置方法,观察改变前后的体积是否发生变化?积是否发生变化?从以上事实中你得到什么启发?从以上事实中你得到什么启发?(二)柱体、锥体、台体的体积(二)柱体、锥体、台体的体积 问题

14、:问题:两个底面积相等、高也相等的两个底面积相等、高也相等的柱体的体积如何?柱体的体积如何?思考思考 关于体积有如下几个原理:关于体积有如下几个原理: (1 1)相同的几何体的体积相等;)相同的几何体的体积相等; (2 2)一个几何体的体积等于它的各部分)一个几何体的体积等于它的各部分体积之和;体积之和; (3 3)等底面积等高的两个同类几何体的)等底面积等高的两个同类几何体的体积相等;体积相等; (4 4)体积相等的两个几何体叫做)体积相等的两个几何体叫做等积体等积体. . 长方体体积:长方体体积:正方体体积:正方体体积:圆柱的体积:圆柱的体积:Vabc3Va2Vr h圆锥的体积:圆锥的体积

15、:VSh13VSh复习回顾复习回顾柱体、锥体、台体的体积柱体、锥体、台体的体积正方体、长方体,以及圆柱的体积公式可以统正方体、长方体,以及圆柱的体积公式可以统一为:一为:V = Sh(S为底面面积,为底面面积,h为高)为高)一般棱柱的体积公式也是一般棱柱的体积公式也是V = Sh,其中,其中S为为底面面积,底面面积,h为高(即上下底面的距离)为高(即上下底面的距离)hs柱柱 体体圆锥的体积公式是圆锥的体积公式是 ShV31(其中其中S为底面面积,为底面面积,h为高为高)31它是同底同高的圆柱的体积的它是同底同高的圆柱的体积的 锥锥 体体棱锥的体积公式也是棱锥的体积公式也是 ShV31SOhhA

16、SBC探究探究探究棱锥与同底等高的棱柱体积之间的关系?探究棱锥与同底等高的棱柱体积之间的关系?31它也是同底同高的棱柱的体积的它也是同底同高的棱柱的体积的 ShV31(其中(其中S为底面面积,为底面面积,h为高)为高) 由此可知,棱柱与圆柱的体积公式类似,都是底由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于面面积乘高;棱锥与圆锥的体积公式类似,都是等于底面面积乘高的底面面积乘高的 31 经过探究得知,棱锥也是同底等高的棱柱体积经过探究得知,棱锥也是同底等高的棱柱体积的的 即棱锥的体积:即棱锥的体积:31 由于圆台由于圆台( (棱台棱台) )是由圆锥是由

17、圆锥( (棱棱锥锥) )截成的,因此可以利用两个锥截成的,因此可以利用两个锥体的体积差得到圆台体的体积差得到圆台( (棱台棱台) )的的体积公式体积公式( (过程略过程略) )根据台体的特征,如何求台体的体积?根据台体的特征,如何求台体的体积?ABABCDCDPSShDCBAPABCDPVVVhSSSS)(31棱台(圆台)的体积公式棱台(圆台)的体积公式hSSSSV)(31 其中其中 , 分别为上、下底面面积,分别为上、下底面面积,h为圆台为圆台(棱台)的高(棱台)的高SS柱体、锥体、台体的体积公式之间有什么关系?柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,为底

18、面面积,h为柱体高为柱体高ShV SS S分别为上、下分别为上、下底面底面面积,面积,h 为台体高为台体高ShV310SS为底面面积,为底面面积,h为锥体高为锥体高上底扩大上底扩大上底缩小上底缩小 例例3 有一堆规格相同的铁制(铁的密度是有一堆规格相同的铁制(铁的密度是 )六角螺帽共重)六角螺帽共重5.8kg,已知底面是正六边,已知底面是正六边形,边长为形,边长为12mm,内孔直径为,内孔直径为10mm,高为,高为10mm,问这堆螺帽大约有多少个(问这堆螺帽大约有多少个( 取取3.14)?)?3/8 . 7cmg 解:六角螺帽的体积是六棱解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即柱的体

19、积与圆柱体积之差,即: :10)210(14. 3106124322V)(29563mm)(956. 23cm所以螺帽的个数为所以螺帽的个数为252)956. 28 . 7(10008 . 5(个)(个)答:这堆螺帽大约有答:这堆螺帽大约有252252个个2 2、用一张长、用一张长12cm12cm、宽、宽8cm8cm的铁皮围成圆柱形的侧面,的铁皮围成圆柱形的侧面,该圆柱体积为该圆柱体积为_1 1、已知一正四棱台的上底面边长为、已知一正四棱台的上底面边长为4cm,4cm,下底面边长为下底面边长为8cm,8cm,高为高为3cm,3cm,其体积为其体积为_112cm112cm3 333288192c

20、mcmpp或各面面积之和各面面积之和展开图展开图22()Srrr lrl 圆台圆台圆柱圆柱)(2lrrS)(lrrS圆锥圆锥棱柱、棱锥、棱柱、棱锥、棱台棱台圆柱、圆锥、圆柱、圆锥、圆台圆台柱体、锥体、台体的表面积柱体、锥体、台体的表面积柱体、锥体、台体的体积柱体、锥体、台体的体积ShV31锥体锥体hSSSSV)(31台体台体柱体柱体ShV 柱体、锥体、柱体、锥体、台体的体积台体的体积基础检测:1、判断题、判断题(1) 四棱柱是平行六面体四棱柱是平行六面体(2) 六个面都是矩形的六面体是长方体六个面都是矩形的六面体是长方体(3) 直平行六面体是长方体直平行六面体是长方体(4) 底面是矩形的四棱柱是长方体底面是矩形的四棱柱是长方体(5)在圆柱的上下底面上各取一点,这两点的连线)在圆柱的上下底面上各取一点,这两点的连线是圆柱的母线是圆柱的母线(6)圆台所有的轴截面是全等的等腰梯形)圆台所有的轴截面是全等的等腰梯形(7)与圆锥的轴平行的截面是等腰三角形)与圆锥的轴平行的截面是等腰三角形(8)过球面上两点的大圆有一个或无数个)过球面上两点的大圆有一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论