2020年山西省中考数学试卷-解析版_第1页
2020年山西省中考数学试卷-解析版_第2页
2020年山西省中考数学试卷-解析版_第3页
2020年山西省中考数学试卷-解析版_第4页
2020年山西省中考数学试卷-解析版_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020年山西省中考数学试卷、选择题(本大题共 10小题,共30.0分)1 .计算(-6)+ (- 3)的结果是()A. -18B. 2C. 18D. -22 .自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面 是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是第20页,共20页3.喷嚏后情揉眼()A. B.打喷嚏捂口星下列运算正确的是()A. 3?+ 2?= 5?C. (-2?2)3 = -8?6B. -8?2 +4?= 2?D. 4?,3 ?3? = 12?夕4 .下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是(

2、)D.5 .泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒 斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的B.图形的旋转A.图形的平移C.图形的轴对称 D.图形的相似6 .不等式组2?、6 a的解集是()4 - ? -5A. ? 5B. 3 ? 5 C. ? 57 .已知点??(?1?), ?(?), ?(?)都在反比例函数 ??= ?(? 0)的图象上,且? 0 ? ? B. ? ? ? C. ? ? ? D. ? ? ?8 .中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图 中的摆盘, 其形状是

3、扇形的一部分,图是其几何示意图(阴影部分为摆盘),通过测量得到 ?= ? 12? C, D两点之间的距离为 4cm,圆心角为60,则图中摆盘的面积是()A. 80?图B. 40?D. 2?9 . 竖直上抛物体离地面的高度 ?(?)与运动时间??(?)间的关系可以近似地用公式?:-5?2+ ?+ ?o表示,其中?o(?)是物体抛出时离地面的高度,?(?/?谑物体抛出时的速度.某人将一个小球从距地面1.5?的高处以20?/?勺速度竖直向上抛出,小球达到的离地面的最大高度为()A. 23.5?B. 22.5?C. 21.5?10 .如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连 接菱形各边中

4、点得到一个小矩形.将一个飞镖随机投掷到大矩 形纸板上,则飞镖落在阴影区域的概率是()“111A. 3B. 4C. 6D. 20.5?D. 8二、填空题(本大题共 5小题,共15.0分)11 .计算:(v3+v5)2 - V24 =.12 .如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下 去,第n个图案有 个三角形(用含n的代数式表示).第1个第2个第3个第4个甲12.012.012.211.812.111.9乙12.312.111.812.011.712.113.某校为了选拔一名百米赛跑运动员参加

5、市中学生运动会,组织了 6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是 .14 .如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24?的有盖的长方体铁盒.则剪去的 正方形的边长为 cm.15.如图,在???赳,/?90 , ?= 3, ? 4, ?L?垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为三、计算题(本大题共1小题,共10.0分)16.计算:(-4) 2 X(-

6、 2)3 - (-4 + 1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.? + 6?+ 92?+ 12?+ 6(?+3)(?-3) (?+3)22?+12(?+3)弟少?-32?+1?+3- 2(?+3)第二步空包.第二止2(?+3)2(?+3)见一2?-6-(2?+1)-2(?+3)第四步2?-6-2?+1 的.止2(?+3)第五步2?+6第六步任务一:填空:以上化简步骤中,第步是进行分式的通分,通分的依据是或填为:,第 步开始出现错误,这一步错误的原因是 ;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需

7、要注意 的事项给其他同学提一条建议.四、解答题(本大题共 7小题,共65.0分)17 . 2020年5月份,省城太原开展了 “活力太原 添购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高 50%后标价,若按标价的八折销售,某顾客购买该电饭煲时, 使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18 .如图,四边形 OABC是平行四边形,以点 。为圆心,OC为 半径的O ?冉AB相切于点B,与AO相交于点D, AO的延 长线交。?汗点E,连接EB交OC于点?怵/?/?的度数.19 . 2020年国家提出并部署了 “新

8、基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.2020新基建中高端人才市场就业吸引力报告重点刻画了 “新基建”中五大细分领域(5?基站建设,工业互联网,大数据中心,人工智能,新能源 汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图. 2犯0年八新基建“七大领域预计投资规模(单位:亿元)一 202Q年一季度五大细分领域在线即位与20”年同期相比增长率道交逋请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是 亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据

9、,从五大细分领域中分别选择了 “ 5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择 就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W, G, D, R, X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画状图的方法求抽到的两张卡片恰好是编号为??(5?侬站建设)和??队工智能)的概率.20 .阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.X年X月X日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工

10、师傅有一块如图所示的四边形木板,他已经在木板上画出一条裁割线 AB,现根据木板的情况,要过 AB上的一点C,作出AB的垂线,用锯子 进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图,可利用一把有刻度的直尺在AB上量出??? 30? ?然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则/?为90.图 图 图办法二:如图 ,可以取一根笔直的木棒,用铅笔在木棒上点出M, N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点 N对应的位置标记为点 Q,保持点N不动, 将木棒绕点N旋转,使点M落在AB上,在木板上将点 M对应的位置标记为点?爆后将

11、RQ延 长,在延长线上截取线段 ??= ?得到点S,作直线SC,则Z?90 .我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出 垂线呢? 任务:(1)填空:“办法一”依据的一个数学定理是 ;(2)根据“办法二”的操作过程,证明 / ?190。;(3)尺规作图:请在图的木板上,过点C作出AB的垂线(在木板上保留作图痕 迹,不写作法);说明你的作法所依据的数学定理或基本事实(写出一个即可).21 .图是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图是两圆弧翼展开时的截面图,扇形

12、ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角 /?/?28 ,半径?= ?妾 60?点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:?280:47,?28 0.88 , ?28 0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.图22 .综合与实践问题情境:如图,点E为正方形 ABCD内一点,/?90 ,将????点B按顺时针 方向旋转90。

13、,得到?点A的对应点为点??)延长AE交??才点F,连接DE. 猜想证明:(1)试判断四边形???白锹?,并说明理由;(2)如图,若?? ?请猜想线段 CF与??的数量关系并加以证明; 解决问题:(3)如图,若?? 15, ?= 3,请直接写出 DE的长.23 .综合与探究如图,抛物线??=1?- ? 3与x轴交于A, B两点(点A在点B的左侧),与y轴交于点?搐线l与抛物线交于 A, D两点,与y轴交于点 巳点D的坐标为(4,-3). (1)请直接写出A, B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点 P的横坐标为??(??0),过点P作??,?轴,垂 足为?.??省直线

14、l交于点N,当点N是线段PM的三等分点时,求点 P的坐标; 若点Q是y轴上的点,且 /?45,求点Q的坐标.答案和解析1 .【答案】C【解析】 解:(-6) +(- 1) = (-6) x(-3) = 18. 3故选:C.根据有理数的除法法则计算即可,除以一个数,等于乘以这个数的倒数.本题主要考查了有理数的除法,熟练掌握运算法则是解答本题的关键.2 .【答案】D【解析】 解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:D.根据轴对称图形的概念: 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对

15、称图形,关键是掌握轴对称图形的定义.3 .【答案】C【解析】 解:A、3?+ 2?= 5?故此选项错误;B、-8?2+4?= -2?,故此选项错误;C、(-2? 2)3 = -8?6,正确;D、4?夕?3?= 12?夕,故此选项错误;故选:C.直接利用合并同类项法则以及哥的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.4 .【答案】B【解析】 解:?柱视图的底层是两个小正方形,上层右边是一个小正方形;左视图底层是两个小正方形,上层左边是一个小正方形,故本选项不合题意;B.主视图和左视图均为底层是两个小正方形,上层左边是

16、一个小正方形,故本选项符合题意;C .主视图底层是三个小正方形, 上层中间是一个小正方形; 左视图是一列两个小正方形,故本选项不合题意;D.主视图底层是三个小正方形,上层右边是一个小正方形;左视图是一列两个小正方形, 故本选项不合题意;故选:B.主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.5 .【答案】D【解析】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推 算出金字塔的高度,这种测量原理,就是我们所学的图形的相似, 故选:D.根据

17、图形的变换和相似三角形的应用等知识直接回答即可.考查了相似三角形的应用、图形的变换等知识,解题的关键是了解物高与影长成正比, 难度不大.6 .【答案】A【解析】解:2?-06 0,4 - ? 0,得:?? 3,解不等式4 - ? 5, 则不等式组的解集为 ?? 5.故选:A.先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取大”来求不等式组的解集.主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7 .【答案】A【解析】解:.反比例函数??= ?(? 0)的图象分布在第二、四象限

18、,在每一象限y随x的增大而增大, 而? ? 0 ?, .? 0 ? ? ?.故选:A.根据反比例函数性质,反比例函数??= ?(? 0)的图象分布在第二、四象限,则??最小, ?最大.本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析 式.也考查了反比例函数的性质.8 .【答案】B【解析】解:如图,连接CD.图.? ? / ?= 60 ,.?等边三角形,. .? ? ? 4?宵=40?(?为,_ 60?122一?制=?焉形? ?形?= 飞60故选:B.首先证明?等边三角形,求出?= ?妾?= 4?再根据?满=?焉形??焉形? ?求解即可.本题考查扇形的面积,等边三角形的判

19、定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9 .【答案】C【解析】解:由题意可得,? = -5?2+20?+ 1.5= -5(?- 2)2 + 21.5,故当? 2时,h取得最大值,此时? = 21.5,故选:C.根据题意,可以得到 h与t的函数关系式,然后化为顶点式,即可得到h的最大值,本题得以解决.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.10 .【答案】B【解析】 解:由图形知阴影部分的面积是大矩形面积的1.飞镖落在阴影区域的概率是 4,故选:B.由图形知阴影部分的面积是大矩形面积的1,据此可得答案.4本题主要考查几何概率,求概率时,

20、已知和未知与几何有关的就是几何概率.计算方法 是长度比,面积比,体积比等.11 .【答案】5【解析】解:原式=3+ 2V6+ 2 - 2 V6=5.故答案为5.先利用完全平方公式计算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二 次根式的性质,选择恰当的解题途径,往往能事半功倍.12 .【答案】(3?+ 1)【解析】解:第1个图案有4个三角形,即4 = 3 X1 + 1第2个图案有7个三角形,即7 = 3 X2 + 1第3个图案有10个三角形,即10 = 3 X3 +

21、 1按此规律摆下去,第n个图案有(3?+ 1)个三角形.故答案为:(3?+ 1).根据图形的变化发现规律,即可用含 n的代数式表示.本题考查了规律型-图形的变化类、列代数式,解决本题的关键是根据图形的变化寻找 规律.13 .【答案】甲1一.【解析】 解:甲的平均成绩为:6(12.0 + 12.0 + 12.2 + 11.8 + 12.1 + 11.9) = 12秒,1乙的平均成绩为:6 (12.3 + 12.1 + 11.8 + 12.0 + 11.7 + 12.1) = 12 秒;分别计算甲、乙两人的百米赛跑成绩的方差为:?2=6(12.2 - 12)2 + (11.8 - 12)2 + (

22、12.1 - 12)2 + (11.9 - 12) 2 =? = 6(12.3 - 12)2 + 2(12.1 - 12)2 + (11.8 - 12)2 + (11.7 - 12)2 = 25,1160 25?甲运动员的成绩更为稳定;故答案为:甲.分别计算、并比较两人的方差即可判断.考查了方差及算术平均数的定义,解题的关键是了解方差及平均数的计算方法,难度不大.14 .【答案】2【解析】 解:设底面长为acm,宽为bcm,正方形的边长为 xcm,根据题意得:2(?+ ?)= 12?+ 2?= 10 ,? 24解得??= 10 - 2? ?= 6- ?代入??? 24中,得:(10 - 2?)

23、(6 - ?)= 24 ,整理得:?,- 11?+ 18 = 0,解得??= 2或??= 9(舍去),答;剪去的正方形的边长为2cm.故答案为:2.根据题意找到等量关系列出方程组,转化为一元二次方程求解即可.本题考查了一元二次方程的应用,解决本题的关键是根据题意找到等量关系列出方程组.5415 .【答案】而【解析】 解:如图,过点F作?2? H.BD在?, . / ?90, ?= 3, ?= 4,.?,?? ?= + 32 = 5, .?!_ ? ?2 = 9=5.?=? 2?= 2?.? 11, ?=,? ???=,32 5.?? ?.? ? =? ? .?= ?= 2,?2 、L 赤?=设

24、?2? ?= 3? ?=3 - 3?. tan / ?=?=? ?.?=18一. ?=17,27243 -万二万,. .?=?+ ?= 串2 +(24)3017,?:1230 _ 545 17 - 85 设??= 2? ?= 3?根据解题的关键是学会利用参数故答案为5-7.85如图,过点 口?L?首先证明FH: ?= 2: 3, tan / ?=?= ?;?构建方程求解即可.本题考查解直角三角形,平行线分线段成比例定理等知识,构建方程解决问题,属于中考常考题型.分式的基本性质分式的分子分母都乘(或除以)同一个不为0的整式,16 .【答案】三分式的值不变 五括号前面是“-,去掉括号后,括号里面的

25、第二项没有变号【解析】解:(1)(-4) 2X(- 1)3- (-4 + 1)=16 x (- -)+38=-2 + 3=1;(2)以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或 填为:分式的分子分母都乘 (或除以)同一个不为。的整式,分式的值不变;”,去掉括号后,括号里第五步开始出现错误,这一步错误的原因是括号前面是“ 面的第二项没有变号;任务二:?-92?+1?+6?+9 - 2?+6(?+3)(?-3)(?+3)22?+12(?+3)第_ ?-3=?+32?+12(?+3)第二步2(?-3)= 2(?+3)2?+12(?+3)第三步_ 2?-6-(2?+1)=2(

26、?+3)第四步_ 2?-6-2?-1=2(?+3)第五步=- 2?;6.第六步;任务三:答案不唯一,如:分式的混合运算,一般按常规运算顺序,但有时应先根据题 目的特点,运用乘法的运算律运算,会简化运算过程.故答案为:三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为。的整式,分式的值不变;五;括号前面是“-,去掉括号后,括号里面的第二项没有变号.(1)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算;(2)根据分式的基本性质即可判断;根据分式的加减运算法则即可判断;任务二:依据分式加减运算法则计算可得;任务三:答案不唯一,只要合理即可.本题主要考查分式的混合运算,解题的关

27、键是掌握分式的混合运算顺序和运算法则及分式的基本性质.同时考查了有理数的混合运算.17 .【答案】解:设该电饭煲的进价为 x元,则标价为(1 + 50%)?%,售价为80% X(1 +50%)?元,根据题意,得 80% X(1 + 50%)?- 128 = 568,解得??= 580 .答:该电饭煲的进价为 580元.【解析】设该电饭煲的进价为 x元,则售价为80% X(1 + 50%)?元,根据某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元列出方程,求解即可.此题考查一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.18 .【答案】解:连接OB,如图,。?与AB相

28、切于点B, .?! ? ?四边形ABCO为平行四边形,. .?/? ?/?.?!?./ ?90 ?= ?.?等腰直角三角形,. / ? / ?45 , ?/? ?. / ?/ ?45 ,1. / ?= 2 / ?22.5 :【解析】 连接OB,如图,根据切线的性质得 ??再利用平行四边形的性质得?/?/?则 / ?90 ,接着计算出 / ? / ?45 O,然后利用平行线的性质得到/?/?45 ,从而根据圆周角定理得到/?的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了平行四边形的性质和圆周角定理.19.【答案】3

29、00【解析】 解:(1)2020年“新基建”七大领域预计投资规模按照从小到大排列为100、160、 200、 300、 300、 500、 640,图中2020年“新基建”七大领域预计投资规模的中位数是300亿元,故答案为:300;(2)甲更关注在线职位的增长率,在“新基建”五大细分领域中,2020年一季度“ 5G基站建设”在线职位与 2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大;(3)列表如下:WGDRXW(?,?)(?,?)(?)(?,?)G(?, ?)(?,?)(?,?)(?,?)D(?, ?)(?,?)(?,?

30、)(?,?)R(?, ?)(?,?)(?,?)(?,?)X(?, ?)(?,?)(?,?)(?,?)由表可知,共有 20种等可能结果,其中抽到“ W”和“R”的结果有2种,21抽到的两张卡片恰好是编号为??(5?沈站建设)和??仅工智能)的概率不=-(1)根据统计图,将2020年“新基建”七大领域预计投资规模按照从小到大排列,再利 用中位数定义求解可得;(2)分别从2020年一季度“ 5G基站建设”在线职位与 2019年同期相比增长率和 2020 年预计投资规模角度分析求解可得;(3)列表得出所有等可能结果,从中找到符合条件的结果数,根据概率公式求解可得.本题主要考查条形统计图、折线统计图和列

31、表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.20.【答案】勾股定理的逆定理【解析】 解:(1) .?= 30, ? 50, ?= 40,. ?+ ?= 30 2 + 402 = 502 = ?,. ./ ?90 ,1 匕 I故“办法一”依据的一个数学定理是勾股定理的逆定理;故答案为:勾股定理的逆定理;(2)由作图方法可知,?? ?= ?图/ ?/ ? ?也?. ./ ?+?/ ?+?/ ?也?80 , .2( / ?2 ?=?)180 ,.?也??0 ,即 / ?90 ;(3)如图所示,直线PC即为所求;答案不唯一,到一条线段两个端点距离相等的点,

32、在这条线段的垂直平分线上.(1)根据勾股定理的逆定理即可得到结论;(2)根据直角三角形的性质即可得到结论;(3)根据线段垂直平分线的性质即可得到结论.本题考查了勾股定理的逆定理,线段垂直平分线的性质,正确的理解题意是解题的关键.21 .【答案】解:(1)连接AD ,并向两方延长, 分别交BC, EF于M, N,由点A, D在同一条水平线上,BC, EF均垂 直于地面可知, ?! ? ?! ?所以MN的长度就是BC与EF之间的距离, 同时,由两圆弧翼成轴对称可得,??= ?.,sin? ?在????, /? 90, /? 28 , ?= 60?.?= ?sin / ?60 ?28 60 X 0.

33、47 = 28.2 ,.?= ?+ ?- ?= 2?+ ? 28.2 X2 + 10 = 66.4, .? EF之间的距离为66.4?(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意得,180180宝- 3 = 2?7,解得:?= 30,经检验,??= 30是原方程的根,当??= 30 时,2?= 60,答:一个智能闸机平均每分钟检票通过的人数为60人.【解析】(1)连接AD,并向两方延长,分别交BC, EF于M, N,由点A, D在同一条水平线上,BC, EF均垂直于地面可知,?!? ?!?所以MN的长度就是BC与EF之间的距离,同时,由两圆弧翼成轴对称可得,??=?解直角三角

34、形即可得到结论;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意列方程即可得到结论.本题考查了解直角三角形的应用,分式方程的应用,正确理解题意是解题的关键.22 .【答案】 解:四边形??? 是??形,理由如下:将????点B按顺时针方向旋转 90,/ ?/ ?= 90?, ?= ? / ?=?90 又. /?=?90 ,.四边形?足??,又. ? ?.四边形???国出?形;(2)?= ?;?理由如下:如图 ,过点D彳?!? H,图. ? ? ?J_ ?.?= -? ?| ? 2, . , ?/ ?90 ,四边形ABCD是正方形,. .? ? / ?90.?/ ?0,/ ?/ ?

35、又. ?= ? / ?=? / ?90 ,.?乌??(??).?= ?= :? ?将????点B按顺时针方向旋转90。,.?= ?.四边形???国出?形,.? ?,?1.? =?.?= ?;? 如图,过点D作??! ??? H ,.四边形???国W形,.?= ? =? ?= ? 2 +? 2,?.? ?= 15, ?= 3, .225 = ? 2 +?(?,+?)2 .? =?) = ?. .?= ? ?=?22,由(2)可知:?= ?= 9, ?= ?= ?仪 12, .?= 3,.,.?,??+ ?= V144 + 9 = 3v17【解析】(1)由旋转的性质可得 /?/? =?90 , ?/?90,由正 方形的判定可证四边形 ??? ???r形;一 .,.一 一1,.(2)过点D彳?!? H,由等腰三角形的性质可得 ??? 2?!?由“AAS”1 .可得?何得??= ?= 2?由旋转的性质可得 ?= ?可得结论; 利用勾股定理可求??=9,再利用勾股定理可求DE的长.本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,全等三角形的判定和 性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.123.【答案】 解:(1)令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论