




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上一元二次方程根的判别式和根与系数的关系(一)一元二次方程根的判别式和根系关系是中考的重点内容之一,即可以单独出现,又可能在代数综合题、几何综合题、应用题中出现,我们准备用两节课的时间,帮助同学们复习这一内容。一、 一元二次方程根的判别式关于的一元二次方程 用配方法可得 称为根的判别式 则方程有两个不相等的实数根 则方程有两个相等的实数根 则方程没有实数根反过来也成立根的判别式主要用来解决以下两类问题 不解方程,判断方程实数根的情况; 根据方程实数根的情况,确定方程中某一字母系数的取值范围。例1 不解方程判断下列关于的一元二次方程根的情况 解:运用判别式先要将方程化为一
2、般形式 方程有两个相等实数根 方程没有实数根 方程是一元二次方程 方程有两个实数根 方程有两个实数根例2 一元二次方程有两个实数根,则的取值范围是 。解:错误解法 = = 注意:应用一元二次方程判别式,首先方程应为一元二次方程,当二次项系数含有字母时,要加上二次项系数可为0这个限制条件。 正确解法 且 例3 关于的一元二次方程 其根的判别式的值为1,求的值。解:= 注意 舍去 例4 已知关于的方程 有实数根,求的取值范围。解:注意本题并没有说方程是一元二次方程,也没有说方程有两个实数根。 方程为一元一次方程 有一个实根 方程为一元二次方程 且 时方程有两个实数根 综上,当时方程有实根。小结:
3、应用判别式的条件是方程为一元二次方程,当二次项系数为字母时,注意系数不为0; 应用判别式应将方程化为一般形式; 注意有实根和有两个实根的区别。二、 一元二次方程根与系数的关系如果,是方程()的两个根则有 一元二次方程根与系数的关系是初中数学中重要的基础知识,主要用来解决以下四类问题: 利用两根关系确定方程的系数; 不解方程,求某些关于根的代数式的值; 根据根系关系构造新方程; 判断方程两根的符号。应用根系关系要注意定理的前提条件: 方程应为一元二次方程,注意二次项系数 在有实数根的条件下例5 已知关于的一元二次方程 有两个不相等的实数根,满足 求的值解: 即 又 解之得 当 时 当 时 舍去
4、例6 已知方程 的两个根为,求 的值。解: , ,=例7 已知方程 的两个实数根为,求作一个以和为根的一元二次方程。解:首先 方程有两个不等实根法1 , += = 所求方程为 法2 注意到均为原方程的根 这样计算较为简单。一元二次方程根的判别式和根与系数的关系(二)例8 已知 实数 且 , 求 的值。 解: 由已知 是方程 的两个不等实根 已知 , 且 ,求 的值。解: 由 及 可知 , 又 由 又 与可看作方程 的两个不等实根 已知实数分别满足 ,求 的值。解:依题意 都是方程 的实数根 当时 是的两个不等实根 当时 是的同一个实数根 当=+时 当=-时 例9 已知是一元二次方程 的两个实数
5、根,且满足 ,求的值。解: 不对称,利用根系关系 代入方程, 可求出 当时, 例10 已知关于的一元二次方程 ,若为方程的两个实数根,且满足 ,求的值。解:已知 , 不对称,利用方程和根系关系 , = = , 当 时 或 例11 已知:关于的一元二次方程 的两个实数根之差的平方为, 试分别判断当与时,4是否成立,并说明理由。 若对于任意一个非零的实数,总成立,求实数及的值。分析:求一元二次方程两根差的方法有两种 求出,易得 = 由根系关系可得解: 当, 时,原方程为 , 成立 当,时,原方程为 ,= 不成立 设方程的两个实数根为 , =对于任意非零实数, 当 ,例12 已知关于的两个方程 和
6、方程有两个不相等的负实数根,方程有两个实数根。 求证:方程的两根符号相同; 设方程的两根分别为,若,且为整数,求的最小整数值。 分析:利用判别式和根系关系可判别方程两根符号 若 两根同号 此时 当,两根同为负数 当,两根同为正数 若 两根异号 此时 当,正根绝对值小于负根绝对值 当,正根绝对值大于负根绝对值 当=,两根绝对值相等 若= 即 两根至少有一个为零 此时 当,另一根必为负数 当,另一根必为正数 当=,即 另一根也为零 证明:设为方程的两个实数根 由已知 即 解得 由方程有两个实根可知 当 时, ,方程有两根之积为正。 方程有两根符号相同。 由 ,又为整数 当 时 不是整数 当 时 或 当 时 当 时 的最小整数值为小结: 在使用根系关系时,要注
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院消毒管理测试试题(附答案)
- 高校辅导员教师心得体会
- 安吉游戏与儿童自主学习心得体会
- 零售门店驻场人员管理流程
- 2025年物业服务质量提升总结和2025年工作计划
- 大型活动安保问题分析与改进措施
- 农产品调味品加工创新创业项目商业计划书
- 短信群发进度监控工具创新创业项目商业计划书
- 智能广告投放渠道创新创业项目商业计划书
- 渔业水域生态保护创新创业项目商业计划书
- 六年级家长会课件
- 2025年党建党史知识竞赛测试题库及答案
- 2025年教科版新教材科学二年级上册教学计划(含进度表)
- GB/T 45859-2025耐磨铸铁分类
- 临床基于ERAS理念下医护患一体化疼痛管理实践探索
- 2025年河北交警三力测试题及答案
- 2025贵州贵阳供销集团有限公司招聘笔试历年参考题库附带答案详解
- 人教版(2024)新教材三年级数学上册课件 1.2 观察物体(2)课件
- GB/T 19519-2014架空线路绝缘子标称电压高于1 000 V交流系统用悬垂和耐张复合绝缘子定义、试验方法及接收准则
- 计算机网络技术论文(优秀6篇)
- 化学史课件讲课教案
评论
0/150
提交评论