1993年全国大学生数学建模论文_第1页
1993年全国大学生数学建模论文_第2页
1993年全国大学生数学建模论文_第3页
1993年全国大学生数学建模论文_第4页
1993年全国大学生数学建模论文_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1993年全国大学生数学建模论 文1993年全国大学生数学模型竞赛试题B题足球队排名次下表给出了我国12支足球队在1988-1989年全国足球级联赛中的成绩,要求1 )设计一个依据这些成绩排出诸队名次的算 法,并给出用该算法排名次的结果。2)把算法推广到任意N个队的情况。3)讨论:数据应具备什么样的条件,用你的方 法才能够排出诸队的名次。T1T2T3T4T5T6T7T8T9T10T11T12022 0011120113311201T1X XX 1124100110001 3101020T2X20121020XX 00 021111 00 01 20 11 3 00 01 01 0T3X4 21

2、 10 02 13 01 01 40 13 11 02 30 12 0XXT4X2 30 10 52 2 11 0 10 0 11 XX33010 11 0 丁5XXXXX01 201 1丁6XXXXXXXT7X1 0200 02 13 01 03 13 02 23 12 0T8X0 11 1 11 3 10 022 00 01T9X3 0100 01 01 0T10X1 02 0T11X1 11 21 1T12X1) 12支球队依次记作 T1,T2,T12.2)符号X表示两队未曾比赛。3)数字表示两队比赛结果,如 T3行与Y8列 交叉处的数字表示:T3与T8比赛了 2场;T 3与T8的进球之

3、比为0 : 1和3 : 1。三个模型模型一假设:1每场比赛中,每支球队都正常发挥。2不考虑进球数,只考虑比赛结果:输或赢。3在每两支队伍的比赛中,多赢 n场,相当于 在基准(1 )的基础上乘以2n;多输n场,相当于在基准的基础上除以2n;平局则等于基准;没有进行比赛也相当于平局,即等于基准。方法:层次分析法建模: 匚”Z表示足球队;Ai表示在相互的比赛中,第i 支足球队赢的事件;C表示足球队的排名。构造成对比较矩阵:A=1 1 1 8 2 2 1/4 1 4 1 1 1;1 1 1/2 2 1 2 1 1 2 1/2 1 1;1 2 1 2 2 2 1 1 1 1 1 1;1/8 1/2 1/

4、2 1 1/2 1/2 1/4 1 1/2 1/21 1;1/2 1 1/2 2 1 1/2 1 1 1 1 1 1;1/2 1/2 1/2 2 2 1 1 1 1 1 1 1;4 1 1 4 1 1 1 4 8 4 2 2;1 1 1 1 1 1 1/4 1 1/2 1 2 1;1/4 1/2 1 2 1 1 1/8 2 1 4 2 2;1 212111/41 1/4 1 2 2;1 111111/21/2 1/2 1/2 1 1/2;1 111111/21 1/2 1/2 2 1;计算权向量和一致性检验成对比较矩阵A的最大特征值为13.5660该特征值对应的特征向量B= ( 0.35460

5、.25910.12180.21010.22430.20300.27060.24120.2052 ) 归一化向量为:0.29340.60470.17710.07090.1910CI =13.5660 - 1212- 1=0.1424B= ( 0.11200.08190.09270.03850.0664经查随机一致性指标 RI表可得:当n=12 时,RI = 1.54ul00.1424所以CR= -w5T= 0.092 < 0.1 表明A通过一致性检验。所以足球队的排名依次为:T7 T1 T3 T9 T2T10 T6 T5 T12 T8 T11 T4代码如下:syms A;>>

6、A=1 1 1 8 2 2 1/4 1 4 1 1 1;1 1 1/2 2 1 2 1 1 2 1/2 1 1;1 2 1 2 2 2 1 1 1 1 1 1;1/8 1/2 1/2 1 1/2 1/2 1/4 1 1/2 1/21 1;1/2 1 1/2 2 1 1/2 1 1 1 1 1 1;1/2 1/2 1/2 2 2 1 1 1 1 1 1 1;4 114111 484 22;1 111111/411/2121;1/4 1/2 1 2 1 1 1/8 2 1 4 2 2;1 212111/411/4122;1 111111/21/2 1/21/2 1 1/21 111111/211/

7、2 1/2 2 1;A =1至11列1.00008.00000.25001.00001.00002.00001.00000.50001.00001.00002.00001.00001.00001.00001.00001.00001.00002.00002.00001.00002.00004.00000.50002.00002.00001.00002.00002.00001.00001.00001.00001.00001.00000.12500.50000.50001.00000.50000.50000.25001.00000.50000.50001.00000.50001.00000.5000

8、2.00001.00000.50001.00001.00001.00001.00001.00000.50000.50000.50002.00002.00001.00001.00001.00001.00001.00001.00004.00001.00001.00004.00001.00001.00001.00004.00008.00004.00002.00001.00001.00001.00001.00001.00001.00000.25001.00000.50001.00002.00000.25000.50001.00002.00001.00001.00000.12502.00001.0000

9、4.00002.00001.00002.00001.00002.00001.00001.00000.25001.00000.25001.00002.00001.00001.00001.00001.00001.00001.00000.50000.50000.50000.50001.00001.00001.00001.00001.00001.00001.00000.50001.00000.50000.50002.000012歹U1.00001.00001.00001.00001.00001.00002.00001.00002.00002.00000.50001.0000>> x,y=e

10、ig(A)x =1至6歹U0.3546+0.0000i0.28920.1213i0.2892- 0.1213i-0.1199+0.5389i-0.1199-0.5389i0.1379 + 0.3456i0.2591+0.0000i0.07440.1607i0.0744 + 0.1607i-0.02040.0305i-0.0204+0.0305i-0.1975 + 0.1511i0.2934+0.0000i-0.11010.1609i-0.1101 + 0.1609i-0.1026+0.0041i-0.1026-0.0041i0.0432 - 0.2452i0.1218+0.0000i-0.03

11、70+0.0529i-0.0370- 0.0529i-0.0714- 0.0384i-0.0714+0.0384i- 0.1053 + 0.2051i0.2101+0.0000i0.0117-0.1124i0.0117 + 0.1124i-0.0735- 0.2027i-0.0735+0.2027i0.3720 + 0.0000i0.2243+0.0000i-0.0118-0.1047i-0.0118 + 0.1047i-0.1692- 0.1217i-0.1692+0.1217i0.0827 - 0.3554i0.6047+0.0000i0.7875+0.0000i0.7875 + 0.00

12、00i0.7473+0.0000i0.7473+0.0000i0.0174 + 0.3707i0.2030+0.0000i-0.10140.0288i-0.1014- 0.0288i0.0828+0.0227i0.08280.0227i-0.1784 - 0.0810i0.2706+0.0000i-0.02620.3383i-0.0262- 0.3383i-0.0802- 0.0141i-0.0802+0.0141i- 0.0990 - 0.2834i0.2412+0.0000i-0.1683+0.0426i-0.1683- 0.0426i0.0346+0.0345i0.0346-0.0345

13、i0.2400 + 0.1807i0.1771+0.0000i-0.0731-0.0958i-0.0731 + 0.0958i0.0733+0.0142i0.0733-0.0142i- 0.0227 - 0.1776i0.2052+0.0000i-0.1041-0.0486i-0.1041 + 0.0486i0.0634- 0.0486i0.0634+0.0486i -0.1560 + 0.0090i7至12列0.13790.3456i0.48250.0000i-0.4780- 0.1446i-0.4780+0.1446i0.4606+0.0000i0.4606 + 0.0000i-0.197

14、50.1511i-0.15510.0000i0.2273 + 0.2785i0.22730.2785i-0.2686+0.0168i-0.2686 - 0.0168i0.0432+0.2452i-0.28740.0000i0.5545 + 0.0000i0.5545+0.0000i0.09090.0238i0.0909 + 0.0238i-0.10530.2051i0.20690.0000i-0.10280.1069i-0.1028+0.1069i0.17410.0480i0.1741 + 0.0480i0.3720+0.0000i-0.15530.0000i0.0169- 0.0849i0.

15、0169+0.0849i-0.3258+0.1821i-0.3258 - 0.1821i0.0827+0.3554i0.14370.0000i-0.2031 + 0.1752i-0.20310.1752i0.14560.0242i0.1456 + 0.0242i0.01740.3707i0.02130.0000i0.0168 + 0.0365i0.01680.0365i0.31950.2739i0.3195 + 0.2739i-0.1784+ 0.0810i0.54190.0000i-0.0967- 0.0531i-0.0967+0.0531i0.2035+0.0984i0.2035 - 0.

16、0984i-0.0990+0.2834i-0.46540.0000i0.2953 + 0.0704i0.29530.0704i-0.4009+0.0546i-0.4009 - 0.0546i0.24000.1807i-0.01730.0000i-0.0150 + 0.1750i-0.01500.1750i0.06960.0971i0.0696 + 0.0971i-0.0227+0.1776i-0.19320.0000i0.0905- 0.1373i0.0905+0.1373i-0.2974-0.0706i-0.2974 + 0.0706i-0.1560- 0.0090i-0.15700.000

17、0i-0.2054- 0.0805i-0.2054+0.0805i0.0777+0.0846i0.00000.0000+0.0000i0.14930.0000+0.0000i0.0777 - 0.0846i13.5660+ 0.0000i0.0000i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+0.0000i3.6332i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.1493- 3.6332i0.0000+0.0000i0.000

18、0+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i-0.3782+2.2734i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i-0.37822.2734i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i-0.2768 + 1.2155i0.0000+0.000

19、0i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0

20、.0000i0.00000.0000+0.0000i0.00000.0000+0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+0.0000i0.0000i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+0.0000i0.0000i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i7至12列0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.000

21、0i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 +

22、0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i-0.27681.2155i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i-0.02000.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0

23、000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0699 + 0.7032i0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.06990.7032i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000i0.0000 + 0.0000i0.0000+0.0000i-0.3372+0.1954i0.0000 + 0.0000i0.0000+0.0000i0.00000.0000

24、i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i-0.3372 - 0.1954i>> syms B;>> B=x(:,1)B =0.35460.25910.29340.12180.21010.22430.60470.20300.27060.24120.17710.205201120340.0818620.0926980.038482006638:一二0.1120 0.0819 0.0927 0.0385 0.0664 0.0709,。北立。臼 0.1910 0.0641 0.0855 0.0762 0.0560 0.06480

25、.0641370.0354950.0762060.0559540.064832模型二假设:1每场比赛中,每支球队都正常发挥。2不考虑输赢,只考虑每支队伍总的进球数建模:Z表示足球队;Bi表示每支足球队总进球数;C 表示足球队排名。构造成对比较矩阵B=1.00001.71430.85711.55564.66671.33334.00001.86674.00002.00001.41184.80000.58330.93331.16673.11111.86670.50000.80000.37501.00000.60000.12500.33332.66671.60001.00000.93332.00009

26、.33330.85710.80000.64293.00000.60000.21431.00008.00001.60000.50000.35002.00001.00000.70000.42860.30001.71430.32140.22501.28570.10710.07500.60003.42861.16670.82352.80002.33331.64715.60001.00000.70592.40000.75000.52941.80000.25000.17650.20000.20000.42860.60001.66674.44442.66670.70831.88891.13330.62501

27、.66671.00000.62501.66671.00000.29170.77780.46670.20830.55560.33332.85711.428613.3333 1.000022.66671.21435.66671.13331.07145.00001.00001.07145.00001.00000.50002.33330.46670.35711.66670.33335.71430.60710.42502.42860.53570.37502.14290.53570.37502.14290.25000.17501.00000.17860.12500.71433.3333.35298.000

28、01.41671.00003.40001.25000.88243.00001.25000.88243.00000.58330.41181.40000.41670.29411.0000计算权向量和一致性检验成对比较矩阵A的最大特征值为12 ;该特征值对应的特征向量D= ( 0.37020.21590.43190.18510.13880.04630.61700.26220.23140.23140.10800.0771 )归化向量为 D= (0.1270 0.0741 0.1481 0.0635 0.0476 0.0159 0.2116 0.0899 0.0794 0.0794 0.0370 0.0

29、264)因为B为一致性矩阵,所以不用进行一致性检 验。所以足球队的排名为:T7 T3 T1 T8 T9=T10 T2 T4 T5 T11 T12 T6代码如下syms B;>> B=1.00001.71430.85718.00001.60000.60003.42862.00002.66671.41181.60004.80000.58331.00000.50001.16671.55564.66670.35000.82350.93330.93332.00002.80001.16672.00001.00002.33333.11119.33330.70001.64711.86671.866

30、74.00005.60000.50000.85710.42861.00001.33334.00000.30000.70590.80000.80001.71432.40000.37500.64290.32140.75001.00003.00000.22500.52940.60000.60001.28571.80000.12500.21430.10710.25000.33331.00000.07500.17650.20000.20000.42860.60001.66672.85711.42863.33334.444413.3333 1.00002.35292.66672.66675.71438.0

31、0000.70831.21430.60711.41671.88895.66670.42501.00001.13331.13332.42863.40000.62501.07140.53571.25001.66675.00000.37501.00001.00002.14290.62501.07140.53571.66675.00000.37501.00001.00002.14290.29170.50000.25000.77782.33330.17500.46670.46671.00000.20830.35710.17860.55561.66670.12500.33330.33330.7143B =

32、1至11列1.00001.71432.00002.66670.60001.41180.88243.00001.25000.88243.00000.58330.41181.40000.41670.29411.00000.85718.00001.60000.58331.00000.50001.60003.42861.16671.55564.66670.35000.82350.93330.93332.00001.16672.00001.00002.33333.11119.33330.70001.64711.86671.86674.00000.50000.85710.42861.00001.33334

33、.00000.30000.70590.80000.80001.71430.37500.64290.32140.75001.00003.00000.22500.52940.60000.60001.28570.12500.21430.10710.25000.33331.00000.07500.17650.20000.20000.42861.66672.85711.42863.33334.444413.33331.00002.35292.66672.66675.71430.70831.21430.60711.41671.88895.66670.42501.00001.13331.13332.4286

34、0.62501.07140.53571.25001.66675.00000.37500.88241.00001.00002.14290.62501.07140.53571.25001.66675.00000.37500.88241.00001.00002.14290.29170.50000.25000.58330.77782.33330.17500.41180.46670.46671.00000.20830.35710.17860.41670.55561.66670.12500.29410.33330.33330.714312列4.80002.80005.60002.40001.80000.6

35、0008.00003.40003.00003.00001.40001.0000 syms a b;>> a,b=eig(B)a =1至6列0.3702+ 0.0000i0.13430.0000i-0.0308 + 0.0000i-0.1732+0.0758i-0.17320.0758i0.0123 + 0.0000i0.2159+0.0000i-0.30660.0000i-0.1981+ 0.0000i-0.07340.2118i-0.0734+0.2118i0.0078 + 0.0000i0.4319+0.0000i0.3301+0.0000i-0.3471+ 0.0000i0.

36、0742+0.1480i0.07420.1480i0.0087 + 0.0000i0.18510.0000i-0.11840.0000i-0.1418 + 0.0000i0.29040.0679i0.2904+0.0679i0.0611 + 0.0000i0.1388+ 0.0000i0.3307+0.0000i-0.0556 + 0.0000i-0.19100.0708i-0.1910+0.0708i-0.0053 + 0.0000i0.0463+ 0.0000i0.3231+0.0000i0.3170 + 0.0000i-0.0746+0.0010i-0.07460.0010i0.0516

37、 + 0.0000i0.6170+ 0.0000i0.2317+0.0000i-0.8109 + 0.0000i0.7240+0.0000i0.7240+0.0000i-0.9933 + 0.0000i0.2622+ 0.0000i0.0165+0.0000i0.1189 + 0.0000i-0.14800.2109i-0.1480+0.2109i0.0594 + 0.0000i0.2314+ 0.0000i-0.19650.0000i0.0248 + 0.0000i0.0178+0.1466i0.01780.1466i0.0176 + 0.0000i0.2314+ 0.0000i-0.196

38、50.0000i0.0248 + 0.0000i0.0178+0.1466i0.01780.1466i0.0176 + 0.0000i0.1080+ 0.0000i0.1177+0.0000i-0.1497 + 0.0000i-0.0252+0.2867i-0.02520.2867i-0.0471 + 0.0000i0.0771+ 0.0000i-0.63730.0000i-0.1425 + 0.0000i0.1176- 0.1410i0.1176+0.1410i0.0132 + 0.0000i7至12列0.3633+ 0.0000i0.15140.0653i0.1514 + 0.0653i0

39、.1840- 0.0098i0.1840+0.0098i- 0.1862 + 0.0000i-0.3543+ 0.0000i-0.03020.0470i-0.0302- 0.0470i0.0126-0.0063i0.0126+0.0063i-0.0987 + 0.0000i-0.3543+ 0.0000i-0.03020.0470i-0.0302- 0.0470i0.0126-0.0063i0.0126+0.0063i-0.0987 + 0.0000i0.4106+ 0.0000i0.02000.1399i0.0200- 0.1399i0.0157-0.0048i0.0157+0.0048i-

40、0.0742 + 0.0000i0.0000+ 0.0000i-0.00000.0000i-0.0000 + 0.0000i-0.0000-0.0000i-0.0000+0.0000i0.0000 + 0.0000i0.0900+ 0.0000i-0.00040.1018i-0.0004 + 0.1018i0.0826+0.0222i0.0826-0.0222i0.0347 + 0.0000i0.5484+ 0.0000i0.95510.0000i0.9551 + 0.0000i-0.9749+0.0000i-0.9749+0.0000i0.2300 + 0.0000i0.0000+ 0.00

41、00i-0.00000.0000i-0.0000 + 0.0000i0.0000+0.0000i0.0000-0.0000i0.0000 + 0.0000i0.0686+ 0.0000i-0.06590.0517i-0.0659- 0.0517i-0.0429+0.0136i-0.0429-0.0136i-0.5833 + 0.0000i0.0686+ 0.0000i-0.06590.0517i-0.06590.0517i-0.0429+0.0136i-0.0429-0.0136i0.7300 + 0.0000i-0.3543+ 0.0000i-0.03020.0470i-0.0302- 0.

42、0470i0.0126-0.0063i0.0126+0.0063i-0.0987 + 0.0000i-0.0683+ 0.0000i-0.07700.0317i-0.0770- 0.0317i-0.0478-0.0341i-0.0478+0.0341i0.0576 + 0.0000ib =0.00000.0000+0.0000i-0.00011至6歹U12.0000+ 0.0000i0.0000i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+ 0.0000i0.0000i0.0000 + 0.0000i0.0000+0.0000i0.

43、0000+0.0000i0.0000 + 0.0000i0.0000+ 0.0000i0.0000+0.0000i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+ 0.0000i0.0000i0.0000 + 0.0000i+0.0001i0.00000.0000 + 0.0000i0.0000+ 0.0000i0.0000i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+ 0.0000i0.0000i0.0000 + 0.0000i+0.0000i0.00000.0000 + 0.0000i0.0000+ 0.0000i0.0000+0.0000i0.0000+0.0000+0.0000i0.0000+0.0000-0.0001i0.0000+0.0000+0.0000i0.0000+0.0000i0.0000 + 0.0000i0.0000+0.0000i0.0000+0.0000i0.0000 +

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论