求展开式系数的六种常见类型_第1页
求展开式系数的六种常见类型_第2页
求展开式系数的六种常见类型_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、求展开式系数的六种常见类型求展开式中的系数是高考常考题型之一,本文以高考题为例,对二项式定理 试题中求展开式系数的问题加以归类与解析,供读者参考。一、(a + b)n (n e N*1)型例1. (x-V2y)10的展开式中x'4项的系数是()(A) 840(B) -840(C) 210(D) 一210解析:在通项公式人+严久()'中令心4,即得(x-血屮的展 开式中x6>-4项的系数为G)(->/2)4 =840,故选A。例2. (x-丄)s展开式中P的系数为oy!x解析:通项公式匚+i=(-1)。广* ,由题意得8-|r = 5,则广=2,故所求卫的系数为(1)

2、2/=28。评注:常用二项展开式的通项公式求二项展开式中某特定项的系数,山待定 系数法确定r的值。二、(d+ b)" ±(c + )'"(n,加 w 7V*)型21例3. (x3-)4+(x+-)8的展开式中整理后的常数项等于XX解析;X -分的通项公式为Tr= C;(-)r(?)4-r = C;(-2)*i ,令XX12-4 = 0,则r = 3,这时得(x3-)4的展开式中的常数项为-C:23 =- 32,X(x + l)s的通项公式为Tk+l= C;(b尸=C8-2*,令8-2" 0,则k = 4,这时得XX(x + i)s的展开式中的常数

3、项为C;=70,故(x3-)4+(x +丄)8的展开式中常数项XXX等于-32 + 70 = 38。例4.在(l-x)5-(l-x)6的展开式中,含疋的项的系数是()(A) -5(B)5(C) -10(D) 10解析:(1-A)5中P的系数-C;=_10, -(1-x)6中疋的系数为1)' = 20,故(17) -(1-x)6的展开式中卫的系数为10,故选D o评注:求型如(a + b)"±(c + y”(mM)的展开式中某一项的系数,可分 别展开两个二项式,山多项式加减法求得所求项的系数。三、(d + b)"(c + d)"'(n,加

4、w N*)型例5. (x2+1)(x-2)7的展开式中疋项的系数是o解析:(2)7的展开式中x、疋的系数分别为C;(_2)6和C;(-2)"*,故(x2+1)(x-2)7的展开式中卫项的系数为C;(-2)&+ C;(-2)4=1008。例6. (a-1)(a- + 1)S的展开式中"的系数是()(A ) -14( B ) 14(C ) -28(D)28略解:(X+1T的展开式中/、“的系数分别为4和C;,故(A-1)(X+1)8展 开式中X5的系数为C;_C; = 14,故选Bo评注:求型如+的展开式中某一项的系数,可分别 展开两个二项式,山多项式乘法求得所求项的系

5、数。四 > (a + b + c)"G w N J 型例7. 6+£+血的展开式中整理后的常数项为解法一:(兰+ 丄 + V2)5= (- + -) + 2"2 x,通项公式7;科=<2珂丄+丄)1,2 x,5-2r-A: 2上+厂一5(-+ -)5-* 的通项公式为 Tr=Cikx-rx5-k-r2-5k-r) =Cikx2 x5-2r-k=0,贝iJk + 2/ = 5,可得k = 1“ = 2或& = 3“ = 1 或k =5“ = 0。当k = ,r = 2时,得展开式中项为C;C;22-2=-;当 k=3,r = 时,,得展开式中项为

6、 C;C; 2y/2 2_, = 20>/2 :当k=5“ = 0时,得展开式中项为点4近=4近。综上,(三+丄+ ")5的展开式中整理后的常数项为1 + 20>/2+4V2=o 2 x22解法二:(三+丄+血)5=(戏+2坯+ 2)5=(x+巴)吓二(兀+卑):,对于二 2 x2x(2x)5(2x)5项式(x + V2)10中,為=久严侮,要得到常数项需10-r = 5, BPr = 5o所 以,常数项为©>(£)'=里返。25 2解法三:(三+丄+血尸是5个三项式(- + 1 + V2)相乘。常数项的产生有三2 x2 x种情况:在5个

7、相乘的三项式(兰+丄+血)中,从其中一个取丄,从另外4个三2 x2项式中选一个取丄,从剩余的3个三项式中取常数项相乘,可得XC; 丄 C: C; (>/2)3 = 202 :从其中两个取二 从另外3个三项式中选两个取丄,22x从剩余的1个三项式中取常数项相乘,可得C;-(|)2-C;-V2=-a/2;从5个相2 2乘的三项式以+丄+血)中取常数项相乘,可得C; 侮 =4迈。2 x综上,(三+丄+血)5的展开式中整理后的常数项为2 x2。后陛+2 2评注:解法一、解法二的共同特点是:利用转化思想,把三项式转化为二项 式来解决。解法三是利用二项式定理的推导方法来解决问题,本质上是利用加法 原

8、理和乘法原理,这种方法可以直接求展开式中的某特定项。五、(a+b)m + (a + b)m+ 4- 4-(a+b)n(m,neN<m<n)型例8.在(i + x) + (l + x)2+ (1 +兀)6的展开式中,疋项的系数是。(用数字作答)解析:由题意得/项的系数为C; + C; + Cj + C; + C: = 35。例9在(1 -X)5 + ( 1 -A-)6 + ( 1 -A-)7 + ( 1 -A-)8的展开式中,含V的项的系数是(A) 74(B) 121(C) -74(D) -121解析:(1X)5+(1x)6+(1X)7+(18_ (17)'1_(1_小 _

9、(1 7)5 _(If'l-(l-x)X(1-x)5中 的系数为c; =5 , -(1 -X)9 中的系数为一 c:=_126, 126+5二一121,故选D。评注:例8的解法是先求出各展开式中/项的系数,然后再相加;例9则 从整体出发,把原式看作首相为(1-x)5,公比为(1-x)的等比数列的前4项和, 用等比数列求和公式减少项数,简化了运算。例8和例9的解答方法是求 (“ + b)"1 + (“ + b严+ + (“ + b)ne 2,1S? < )的展开式中某特定项系数的 两种常规方法。六、求展开式中若干项系数的和或差例 10.若(1-2x)20<)4 =

10、a()+"2,+ + 如存"104 (x 已 R),则(a。+ 绚)+ (a。+ ©) + 他 + “3) + +(5 +。20«4) =。(用数字作答)解析:在(1 -2x)2(x)4 =a0+ax + a2x2 +. + «2oo4A:2(X>4 中,令x = 0,则«0 = 1, 令 X = 1,则"o + + 02 + “3 + +。2004 = (-1)2<>"4 = 1 故 0 + 5 ) + (“0 +)+(“0 +)+ +(5 + °2004) =2003 a0 +a2

11、+ 4f d1<)04 = 2004。例 11 (2x + y/3)4 = a0 + atx+a2x2 + a4x4 ,则(aQ + a2 +o4)2 -(a, +a3)2的值为()(A) 1(B) -1(C)0(D) 2解析:在(2x+>/3)4 =a() + ax+a2x2 + a3xy + a4x4 中,令 x = 1,可得 a0+a +a2+a3 +a4 = (2 + V3)4 >令 x = -1,可得你 _q + a2 -a3+ a4 = (2 _ V3)4丿 以,(a。+ °4) (" + 3) = (a。+ a*, + “4 + “3)(“0 + °4 "】6)=(«0 +4 +a2 +“3 +“4)(5 - "i +“2 a3 +°4)二(2 + V3)4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论