




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.正弦定理:正弦定理:RCcBbAa2sinsinsin(其中:(其中:R为为ABC的外接圆半径)的外接圆半径)2.三角形面积公式:三角形面积公式:CabBcaAbcSABCsin21sin21sin21 复习复习3.正弦定理的变形:正弦定理的变形:CRcBRbARasin2,sin2,sin2RcCRbBRaA2sin,2sin,2sincbaCBA:sin:sin:sinCabbacBaccabAbccbacos2cos2cos2222222222 变形变形abcbaCcabacBbcacbA2cos2cos2cos222222222 4.余弦定理:余弦定理: 在在 中,以下的三角关系式
2、,在解答有关中,以下的三角关系式,在解答有关三角形问题时,经常用到,要记熟并灵活地加以运三角形问题时,经常用到,要记熟并灵活地加以运用用:ABC; CBACBACBAcos)cos(,sin)sin( 2sin2cos,2cos2sinCBACBA 的的形形状状。断断、根根据据所所给给的的条条件件,判判例例ABC 1AbBacoscos1 )(BbAacoscos2 )()2()2(222222bcacbbacbcaa 222222acbbca 2222ba ba 为为等等腰腰三三角角形形。ABC 解:解:)( 1AbBacoscos 得得法法二二:由由AbBacoscos ABRBARcos
3、sin2cossin2 0cossincossin ABBA0sin )(即即BABA )2()2(222222acbcabbcacba 0422422 bcbaca0)(22222 bacba022222 bacba或或角形。角形。为等腰三角形或直角三为等腰三角形或直角三ABC 222bacba 或或解:解:)( 2BbAacoscos 得得法法二二:由由BbAacoscos BBRAARcossin2cossin2 BA2sin2sin BABA2222 或或2 BABA或或即即 在判断三角形形状时,主要通过三角形边或角在判断三角形形状时,主要通过三角形边或角之间关系进行判断,将已知条件利
4、用正弦定理统一之间关系进行判断,将已知条件利用正弦定理统一为角的关系,或用余弦定理统一为边的关系,有时为角的关系,或用余弦定理统一为边的关系,有时也可以结合两者运用。也可以结合两者运用。CbBAbacos2sinsin 法一:由正弦定理得:法一:由正弦定理得:baabcbaC22cos222 法法二二:由由余余弦弦定定理理得得:为为等等腰腰三三角角形形ABC 的形状。的形状。,判断,判断中已知中已知例例2 2:在:在ABCCbaABC cos2 例例3已知已知ABC的三内角的三内角A、B、C成等差,而成等差,而A、B、C三三内角的对边内角的对边a、b、c成等比,试证明:成等比,试证明:ABC为
5、正三角形。为正三角形。证明:证明:a、b、c成等比,成等比,b2=acA、B、C成等差,成等差,2B=A+C,又由余弦定理得:又由余弦定理得:60cos2cos222222accaBaccab ,22accaac 0)(2 ca即即,a=c又又B=60o,ABC是正三角形。是正三角形。acca 22又又A+B+C=180o,B=60o,A+C=120o解:解:oBA120 oC60 232 abba,Cabbaccos2222 abba32 )(6612 2323221sin21 CabSABC6 cCBABA,求求角角)(满满足足、的的两两根根,角角03sin2 的的面面积积。的的长长度度及及的的度度数数,边边ABCc 02322 xxba是方程是方程、例例4 4 锐角三角形中,边锐角三角形中,边23sin03
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东2025年山东省事业单位就业援青岗位公开招聘15人笔试历年参考题库附带答案详解
- 湖南城建职业技术学院《运动训练3》2023-2024学年第二学期期末试卷
- 郑州澍青医学高等专科学校《创业经营与广告公司管理》2023-2024学年第二学期期末试卷
- 江西婺源茶业职业学院《环境工程专业实验实验教学》2023-2024学年第二学期期末试卷
- 青岛城市学院《客户运营管理》2023-2024学年第二学期期末试卷
- 湖北汽车工业学院科技学院《通信原理》2023-2024学年第二学期期末试卷
- 新疆大学《行政救济法》2023-2024学年第二学期期末试卷
- 河北传媒学院《智能计算机图形学》2023-2024学年第二学期期末试卷
- 西安培华学院《外贸合同与单证》2023-2024学年第二学期期末试卷
- 贵州护理职业技术学院《建筑功能材料》2023-2024学年第二学期期末试卷
- 2025年中级会计师考试试卷及答案
- 形势与政策(贵州财经大学)知到智慧树章节答案
- 从创意到创业智慧树知到期末考试答案章节答案2024年湖南师范大学
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 中国戏曲剧种鉴赏智慧树知到期末考试答案章节答案2024年上海戏剧学院等跨校共建
- 更换岩棉彩钢板施工方案
- 国际贸易销售合同中英文
- 余数与除数的关系导学案
- EAP:企业实施EAP的建议
- 浮吊作业施工方案范文
- 【2021更新】;国家开放大学电大专科《Dreamweaver网页设计》网络核心课形考任务8及9试题及答案
评论
0/150
提交评论