




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、导数应用:含参函数的单调性讨论(二)对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多 个讨论点时,要注意讨论层次与顺序, 一般先根据参数对导函数类型进行分类,从简单到复杂。一、典型例题例1、已知函数f(x) ax3 3x2 3x 1,a R,讨论函数f (x)的单调性.分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。 而确定函数的增区间就是确定 f'(x) 0的解区间;确定函数的减区间就是确定f'(x) 0的解区间;讨论单调性与讨论不等式的解区间相应。32解: 因为f (x) ax 3x3x 1,a R,(2)当 a 0时,f/
2、(x)所以函数f(x)在(当 a 0时,f/(x)I)当aII)当 01时,a 1时,1 . 1xi3(2x 1),当 x所以f/(x)1时2, '一 2 一3(ax 2x 1)f/(x) 0 ;当 x1、,2 ,1,一上单调递增,在一,223(ax2 2x 1)的图像开口向上,)上单调递减;36(1 a)11/” f(x) °;36(1 a)36(1a-,x20,时,f/(x)a) 0,时,方程1 a 口,且 x10,所以函数f (x)在R上递增;f/(x) 0的两个根分别为x2,所以函数f (x)在(1 _ 1 a(,)上单调递增,a综上所述,小结:a当 a 0时,f/(
3、x) 3(ax2 2x1 . 1 a 1.1a、,)上单倜递减;方程f/(x) 0的两个根分别为x1所以函数f(x)在(a1)的图像开口向下,且11 a必a(1 1aa36(1 a) 01- 1 a l,且 X x2,a)上单调递减,在(1 a,-X2£LZE)上单调递增。; ,当a 0时,所以函数f(x)在(1a, 1 丁1 a)上单调递增,ai 1 ' 1 a在(,)aa1 1a 、, (,)上单调递减;C ,1,、,、,0时,f (x)在(,上单调递增,在2a 1时,所以函数f (x)在(11 a.)上单调递减;1 1a%,)上单调递增,a1a,)上单调递减; a1时,
4、函数f (x)在R上递增;导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论)最后根据导函数正负确定原函数相应单调性,记得写出综述结论。例2. (2010山东理数改编)1a已知函数f(x) lnx ax 1 (a R).讨论f (x)的单倜性;x1 a 解:因为f(x) In x ax1的定义域为(0,) x'/、1 a 1 ax2 x 1 a 小 、所以 f (x) - a 2x (0,),x xx令
5、h(x) ax2 x 1 a, x (0,),则 f'(x)与g(x)同号法一:根据熟知二次函数性质可知g(x)的正负符号与开口有关,因此可先分类型讨论(1)当也二。时,由(x)二一工+ 1,工 w (0,+co),听以 当一应I)时,林司。,此时,(於0,函数,口)单调递减?当工亡。例)时,岭)<0.此时/(力0,函数方单调递增(2)当ihO时.由/(力=0,即 az1 Z +1£J = 0 r 解得 Xj = l,x2 = - - 1 a1 当a<0时,由于一1<0<1, h(x)开口向下,结合其图象易知 a一 一 x (0,1), h(x)>
6、; 0,此日寸f (x)< 0,函数 f (x)单调递减; x (1,)时,h(x)<0,此时f (x)>0,函数f(x)单调递增.当a 0时,h(x)开口向上,但x2是否在定义域需要讨论:1因一 1 0a 0或a 1所以a,一,1一 一,人一i)当a 1时,由于一1<0<1, h(x)开口向上,结合其图象易知 a 一 一 x (0,1), h(x)< 0,此时 f (x)>0,函数 f(x)单调递增., 一' 一 一 一x (1,)时,h(x)>0,此时f (x)<0,函数 f(x)单调递减;ii)当0 a 1时,g(x)开口向上
7、且 七?2(0,),但两根大小需要讨论:1 ,a)当 a 一时,x1 x2, h (x )n 0 恒成立,2此时f (x)W0,函数f (x)在(0, + )上单调递减;1 , 1一,一,,一,b)当0<a<时,一1>1>0,g(x)开口向上且在(0,)有两根2 a'一 -x (0,1)时,h(x)>0,此时f (x)<0,函数f(x)单调递减;1,'x (1- 1)时h(x)<0 ,此时f (x)>0,函数 f(x)单调递增; a1 ,,x ( 1,)时,h(x)>0 ,此时f (x)< 0 ,函数f (x)单倜递减
8、; a,1. .1 ,c)当一a 1时,0 1 1 , g(x)开口向上且在(0,)有两根2 a,一 1x (0,- 1)时,h(x)> 0,此时f(x)<0,函数f(x)单调递减; a1.x ( 1,1)时h(x)<0 ,此时f (x)>0,函数 f(x)单调递增; ax (1,)时,h(x)> 0,此时f(x)< 0,函数f(x)单调递减;小结:此法是把单调区间讨论化归为导函数符号讨论,而确定导函数符号的分子是常见二次型的,一般要先讨论二次项系数,确定类型及开口 ;然后由于定义域限制讨论其根是否在定义域内,再讨论两根大小注,结合g(x)的图象确定其在相应
9、区间的符号,得出导函数符号。讨论要点与解含参不等式的讨论相应。法二:(1)当门:。时,宓=听以 当工已。1)时,贴)0,此时75K0,函数/单调递减;当尤时,机幻m 此时一(疝>0,函数,单调递增当口 = 0时,由/住即 4/一天+1-2=0,解得 = 1:X2 = - - 1 a11一 1 0 a 0或 a 1a1 一 一.i)当a<0时,由于一1<0<1 , h(x)开口向下,结合其图象易知 a'一 -x (0,1), h(x)> 0,此日寸f (x)< 0,函数 f (x)单调递减;x (1,)时,h(x)<0,此时f (x)>0,
10、函数f(x)单调递增.1一 ii)当a 1时,由于1<。<1, h(x)开口向上,结合其图象易知 a一 一 x (0,1), h(x)< 0,此时 f (x)>0,函数 f(x)单调递增., 一' 一 一 一x (1,)时,h(x)>0,此时f (x)<0,函数 f(x)单调递减;1 1 00 a 1时 g(x)开口向上且 x1,x2 (Q)a1 .,、一,、i)当 a 时,x1 x2, h(x)为 0 恒成立,2. . ' . ., _ 、此时f (x)W0,函数f(x)在(0,+ )上单调递减;一 1 /1 . . 一 一 .一.一,ii
11、)当0V a<一时,- 1>1> 0 , g(x)开口向上且在(0,)有两根2 ax (0,1)时,h(x)>0,此时f (x)<0,函数f(x)单调递减;1x (1- 1)时h(x)<0 ,此时f (x)>0,函数 f(x)单调递增; a1,'一,U,x ( 1,)时,h(x)> 0,此时f (x)< 0,函数f(x)单调递减; a,1,-1, , ,iii)当一 a 1时,0 1 1, g(x)开口向上且在(0,)有两根2a,八1x (0,- 1)时,h(x)>0 ,此时f (x)<0 ,函数f(x)单倜递减; a1
12、一.,、八一,x ( 1,1)时h(x)<0,此时f (x)>0,函数 f(x)单调递增; a一 . 一 一 一 一-' x (1,)时,h(x)> 0,此时f (x)< 0,函数f(x)单调递减;小结:单调性讨论化归为讨论导函数符号的问题,多数导数是连续函数,其正负所以区间可由其根划分,所以可根据相应导函数的零点个数(从少到多)分类,先讨论零点可能没意义的(如分母或偶次根等含参数,要先讨论分母是否为零,被开方式是否非负),然后讨论解出的根是否为增根(解方程时由于去分母,去根号,去对数符号时导致范围扩大而得出根,要讨论其是否在定义域内),再对有多个零点的讨论其大
13、小,最后由导数的根将定义域划分为若干区间并结合导函数图象确定相应区间上确定导函数的正负(不能确定的再讨论何时正何时负)而得到相应单调性质。最后确记要综合讨论情况,写出综上所述结论。函数问题一定要注意先确定定义域,单调区间是定义域的子集。为讨论导函数的根及导函数的符号情况,般能因式分解的要先分解(包括分式先通分)例2 . (2011年广东卷文19题)设a 0,讨论函数f(x)2ln x a(1 a)x 2(1 a)x 的单倜性.解:函数f(x)的定义域为(0,)1f (x)2a(1 a)x 2(1 a)x2a(1 a)x2 2(1 a)x 1(x>0)2令 g(x) 2a(1 a)x 2(
14、1a)x 1,则 f'(x)与 g(x)同号,一 1. (1)当a 1时,g(x) 1,f'(x) 0, f (x) ln x在定义域(0,)上为增函数 x22(2)当 a 1 时,4(1 a)8a(1 a) 12a16a 4 4(3a 1)(a 1)1当 0 a 1时,g(x)开口向上,图象在 x轴上方,所以g(x) 03所以f (x) 0,则f (x)在(0,)上单调递增-1,.一一当 0 a 或a 1,此时令 f (x) 0, 解得31a 、.1 a .x1, x22a(1 a) 2a(1 a)由于 2a(1 a) 00 a 1 g(x)开口向上且 0 x1x2 ,因此可
15、进一步分类讨论如下:i)当 a 1 时,2a(1 a) 0g(x)开口向下,X20 x1增, x 0, f (x) 00 xx1 ; f (x) 0 x x1则f (x)在(0,1 a '(3a 1)(a 1)上单调递增,2a(1 a)在j a 43a 1)(a 1),)上单调递减2a(1 a),八1 .,、ii)当 0 a 时,f (x) 030 x x1 或 x x2 ; f (x) 0x1 x x2、一c 1 a (3a 1)(a 1)则 f (x)在(0,-2a(1 a)a .(3a 1)(a 1)2a(1 a)上单调递在(1a;(3TW2a(1 a)(3a 1)(a 1)、-
16、)上单调递减2a(1 a)1 a综上所述,f(x)的单调区间根据参数 a讨论情况如下表:0 a :1 a 13a 1(0,x1)(x1,x2)(x2,)(0,)(0,x1)(x1,)增Z减增Z增Z增Z增(其中X11 (a 1)(3a 1)2a 2a(1 a)一_1.(a 1)(3a 1)2a 2a(1 a)一小结:求单调区间要确定定义域,确定导函数符号的关键是看分子相应函数,因此讨论点有:第一是类型(一次与二次的根个数显然不同 );第二有没有根(二次的看判别式),第三是有根 是否为增根(在不在定义根内;第四有根的确 定谁大;第五看区间内导函数的 正负号(二次 函数要看开口)。确记要数形结合,多
17、数考题不会全部讨论点都要讨论的,题中往往有 特别条 件,不少讨论点会同时确定(即知一个就同时确定另一个)。判别式与开口的讨论点先谁都可以,但从简单优先原则下可先根据判别式讨论,因为当导函数无根时它只有一种符号,相应原函数在定义域内(每个连续的区间)为单调函数较简单。二、巩固作业:a 1.已知函数f(x) ln x 一.,求f(x)的单倜区间.x解:函数的定义域为(0,+ ) , f x 22.已知函数f(x)= -x2 -ax+(a-1) ln x,讨论函数f(x)的单调性,求出其单调区间。2W,x x x令 f' x 0 得:x a若 a 0即a0,则f x 0, f x在(0,)上
18、单调递增;若 a 0即a0,则由f x0得x>-a,由f x0得乂<勺f x在(a,)上单调递增,在0,-a 上单调递减.总之,当a 0时,f x在(0,)上单调递增;当a 0时,f x在(a,)上单调递增,在0,-a上单调递减令f' x0#:x1 1,x2a 1若a 1 0即a 1时,f'(x) 0 x 1;f'(x) 00 x 1此时f(x)在(1,)单调递增,在(0,1)单调递减(2)若a 1 0即a 1时,若a 1 1即a 2时,f'(x) (x 1) >0,故f(x)在(0,)单调递增.x若0< a 1 1,即1 a 2时,由
19、f (x) 0 得,a 1 x 1 ;由 f (x) 0 得,0 x a 1或x 1故f(x)在(a 1,1)单调递减,在(0, a 1),(1,)单调递增.若a 1 1,即a 2时,由 f (x) 0 得,1 x a 1 ;由 f (x) 0 得,0 x 1或x a 1故f(x)在(1,a 1)单调递减,在(0,1),(a 1,)单调递增.综上所述,当a 1 , f (x)单调增区为(1,),减区间是(0,1);当1 a 2时,f(x)的减区间是(a 1,1),增区间是(0,a 1),(1,);当a 2时,f (x)在定义域上递增,单调增区为 (0,)(不存在减区间)当a 2时,f(x)的减区间是(1,a 1),在增区间是(0,1),(a 1,).23.已知函数f (x尸ln (1+ x)- x+ x (k > 0),求f (x)的单倜区间.x(kx k 1)人 j1 k ,-解:x ( 1,) , f '(x).令f x0# :x10, x2 , k 01 xkx(1)当 k 0 时,f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工合同协议格式
- 员工承包仓库合同协议
- 2025不动产抵押担保合同范本
- 总包经理劳务合同协议
- 2025年租赁合同格式范本
- 2025简易仓储租赁合同
- 民宿拍摄合同协议模板
- 模板设备转让合同协议
- 2025中文合同模板范文
- 恋爱到结婚合同协议
- (四调)武汉市2025届高中毕业生四月调研考试 语文试卷(含答案详解)
- 广州广州市天河区华阳小学-毕业在即家校共话未来-六下期中家长会【课件】
- 公司事故隐患内部报告奖励制度
- 大学生创新创业基础(创新创业课程)完整全套教学课件
- 2020年国家义务教育质量测查德育科目模块一模拟试题含参考答案
- 导管固定-PPT课件
- 服务器、存储、网络及安全设备visio图标系列PPT课件
- 《历史文献学》教学大纲
- 农村信用社助农金融服务终端管理办法
- 语法填空题教案
- 《项链》中学语文课本剧剧本
评论
0/150
提交评论