




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、拉曼散射理论TTA standardization office TTA 5AB- TTAK 08- TTA 2C激光拉曼光谱实验拉曼散射是印度科学家 Raman在1928年发现的,拉曼光谱因之得名。光 和媒 质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射叫做瑞利散射,由英国科学家瑞利于1899年进行了研究。但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还 观察到了很微弱的绿光。拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。因这一重大发现,拉曼于
2、1930年获诺贝尔 奖。激光拉曼光谱是激光光谱学中的一个重要分支, 应用十分广泛。如在化学方 面 应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、 产生超短 脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。实验目的:1、掌握拉曼光谱仪的原理和使用方法;2、测四氯化碳的拉曼光谱,计算拉曼频移。实验重点:拉曼现象的产生原理及拉曼频移的计算实验难点:光路的调节实验原理:仪器结构及原理1、仪器的结构LRS-II激光拉曼/荧光光谱仪的总体结构如图 12-4-1所示。2、单色仪单色仪的光学结构如图1
3、2-4-2所示。Si为入射狭缝,M为准直镜,G为平面 衍射光栅,衍射光束经成像物镜 M2汇聚,经平面镜M3反射直接照射到出 射狭缝S2上,在S2外侧有一光电倍增管 PMT,当光谱仪的光栅转动时,光谱 信号通过光 电倍增管转换成相应的电脉冲, 并由光子计数器放大、计数,进入 计算机处理,在 显示器的荧光屏上得到光谱的分布曲线。3、激光器本实验采用50mW半导体激光器,该激光器输出的激光为偏振光。其操作 步 骤参照半导体激光器说明书。4、外光路系统外光路系统主要由激发光源(半导体激光器)、五维可调样品支架 S、偏振组件Pi和巳以及聚光透镜 Ci和C2等组成(见图12-4-3) o激光器射出的激光束
4、被反射镜R反向后,照射到样品上。为了得到较强的激发光,采用一聚光镜C使激光聚焦,使在样品容器的中央部位形成激光的束腰。为了增强效果,在容器的另一侧放一凹面反射镜 M2。凹面镜M2可使样品在该侧的散射光返回,最后由 聚光 镜C2把散射光会聚到单色仪的入射狭缝上。调节好外光路是获得拉曼光谱的关键,首先应使外光路与单色仪的内光路共轴一般情况下,它们都巳调好并被固定在一个钢性台架上。可调的主要是激光照射在样品上的束腰,束腰应恰好被成像在单色仪的狭缝上。是否处于最佳 成像位置,可通过单色仪扫描出的某条拉曼谱线的强弱来判断。5、信号处理部分: 光电倍增管将光信号变成电信号并进行信号放大,最后送入电脑显示系
5、统, 在电脑上显示出拉曼光谱。拉曼光谱的特性:频率为U的单色光入射到透明的气体、液体或固体材料上而产生光散射时,散射光中除了存在入射光频率 U外,还观察到频率为2土Au的新成分,这种频 率 发生改变的现象就被称为拉曼效应。U即为瑞利散射,频率u+ZXu称为拉曼散射 的斯托克斯线,频率为u-Au的称为反斯托克斯线。Au通常称为拉曼频移, 多用 散射光波长的倒数表示,计算公式为Av =一(7.14.1)2式中,入和入)分别为散射光和入射光的波长。Au的单位为ci"】。拉曼谱线的频率虽然随着入射光频率而变化,但拉曼光的频率和瑞利散射光 的频率之差却不随入射光频率而变化,而与样品分子的振动转
6、动能级有关。拉 曼 谱线的强度与入射光的强度和样品分子的浓度成正比:式中?一在垂直入射光束方向上通过聚焦镜所收集的喇曼散射光的通量0L入射光照射到样品上的光通量(W);SL拉曼散射系数,约等于10-%10-29mol/sr;4单位体积内的分子数;样品的有效体积;A一考虑折射率和样品内场效应等因素影响的系数;拉曼光束在聚焦透镜方向上的半角度。利用拉曼效应及拉曼散射光与样品分子的上述关系,可对物质分子的结构和浓度进行分析和研究。样品分子被入射光照射时,光电场使分子中的电荷分布周期性变化,产生一个交变的分子偶极矩。偶极矩随时间变化二次辐射电磁波即形成光散射现象。单位体积内分子偶极矩的矢量和称为分子的
7、极化强度,用P表示。极化强度正 比于入射电场P = aE(7.14.2)&被称为分子极化率。在一级近似中Q被认为是一个常数,则 P和E的方向相 同。设入射光为频率u的单色光,其电场强度 E=Ecos27iut,则P = aE)COS2At(7.14.3)如果认为分子极化率&由于各原子间的振动而与振动有关,则它应由两部分组成:一部分是一个常数Q0,另一部分是以各种简正频率为代表的分子振动对&贡献的总和,这些简正频率的贡献应随时间做周期性变化,所以a = aQ + 工匕 cos2zzv/(7.14.4)式中,乙表示第n个简正振动频率,可以是分子的振动频率或转动频率,也可 以
8、是晶体中晶格的振动频率或固体中声子散射频率。因此p = Eo<zo cos 2/n + Eo X ctn cos 2/rv/ ? cos1(7.14.5)= Eoao cos+ Eo X<xncos2n(y - vn)t + cos2A(v + vn)t上式第一项产生的辐射与入射光具有相同的频率 U,因而是瑞利散射;第二项为 包 含有分子各振动频率信息4在内的散射,其散射频率分别为(U-Vn)和(U+ Un),前者 为斯托克斯拉曼线,后者为反斯托克斯拉曼线。式(7.14.5实验步骤:(请根据你的实际操作过程,充实补充下面的实验步骤,包括软 件 的操作详细过程)1、将四氯化碳倒入液体
9、池内,调整好外光路,注意将杂散光的成像对准单色仪的入射狭缝上,并将狭缝开至 o.1mm左右;2、启动LRS-II/III应用软件;3、输入激光的波长;4、扫描数据;5、采集信息;6、测量数据;7、读取数据;8、寻峰;9、修正波长;10、计算拉曼频移。实验数据:数据处理:实验总结:本次拉曼光谱实验获得了成功!通过该实验,懂得了拉曼光谱实验仪的基本原理和构造,学会了光路的调节方法,掌握了该仪器软件的基本操作方法,认识到激光和四氯化碳等物质分子相互作用后,会产生不同于入射激光波长的新的波长的光一拉曼光,认识到利用拉曼光谱仪可进行许多行业的科学研究,对许多行业的科研有重要的意义。(-)激光拉曼散射的M
10、子理论1、M子理论依据M子散射理论, 光M子与分子的非弹性碰撞过程用薛定鄂方程描述汤丁二(凤 +/)0di(3-3-16)式中Ho是光子和分子不存在相互作用时候的哈密顿算符,H?是光子与散射分子体系相互作用算符(微扰),中是有微扰存在时系统的波函数。设非微扰时光子-分子体系的本征函数为空 J则有微扰时的本征函数可表述为(3-3-17)弘(t)是时刻为t此微扰体系处于第n个非微扰本征态克的几率振幅。(3 - 3 -17)代入(3-3-16)两边同乘$tH碎并对所有变M积分得卜一也必赢(3-3-18)后式是非微扰本征函数所确定得相互作用能M算符得矩阵元,,反是非微扰本征状态得本征值,即分子体系本征
11、能M与光子能M之和。因此体系处于初态(d),中 间态(b),和终态(c)的几率振幅的导数为汕“对忖3Z' (379)初始时(0)二?叫(0) = 0,设时间范围足够短,% (几率状态不发生明显变 化,即%&厂绻(0)=1,则由(3-3-19)式中第二项得仰焉一篇(3-3-20)代入(3-3-19)第三项得上式对时间积分并代入初始条件(叫叫 (0)二0)得1- co$(g 亿(焉如一(3-3-22)忍榔X郴)b(3-3-23)所考虑的时间内 叫变化很少,但远大于光波的振动周期.?如氏,?>如焉即因为SU二七E厂曰> 9h(3-3-24)所以单位时间内系统由本征状态 a
12、到本征状态c的跃迁几率% *贝)""怠年讥芯-空(3-3-25)只有当£二£时上式不为零。设散射前后分子的能M分别为和耳入射光子和散射光子的能M为hvo和2,如图3 -3 所示。贝 1 Ec= sc +hv, Ea= sa + hv0,由 Ee=Ea 得hv = h (V-VA=SQ-A(3_3_26)当弘耳时,以仙+人冬反stocks线;二时,stocks线。因 为粒子数分布ns,即低能级分子数多,所以从低能级向高能级跃的stocks谱 线得强度高于反stocks线的强度。图3-3-3拉曼散射的M子解释示意图既然体系状态分成若干分立的能级,那么对于N个
13、分子的体系,具第h个振动能级上的粒子数,在平衡状态时候服从玻尔兹曼分布。所以,由该体系产生的拉曼散射其斯托克斯和反斯托克斯光强必然不同。(3-3-27)二者强度之比为其中心是激发光的频率,坏是振动频率,h是Planck常数,k是Boltzmann常 数,T是绝对温度.2、选择定则、拉曼活性des(伞*)叫盯克购的 &二%+二一产打 所以(梆”卜闻偏侬U少+网判如估 (3_3-28)只有当n二m时上式第一项不为零,这就是瑞利散射项:只有当n=A+l时第二项为零,这就是线性谐振子的拉曼散射项。由此得到线性谐振子的拉曼散射选择定则:S = Q 1 (3-3-29)完全相似的讨论可用于刚性转子
14、的拉曼光谱的转动选择定则显然只有极化率对简正坐标的导数不为零时上式第二项不为零,由此得到振动具有拉曼活性的判据:振动分子的极化率对简正坐标的导数不为零的简正振动具有拉曼活性。经典理论中提到的振动。k的拉曼活性问题,在半经典的M子理论中就是体系第h个振动的跃迂矩阵元是否为零的问题,这也就是通常所说的M子跃迂选择定则。在M子力学中,从体系波函数和力学M的对称性质就可以宜接得到莫个振动的具体选择定则,从而决定该振动是否是拉曼活性的,无须像经典理论那样,为判断拉曼洁性需经繁复的计算。(三)其它拉曼散射效应1、共振拉曼效应当激发光的能M接近或等于散射分子的莫个电子吸收带的能M时,莫些拉曼线强度显着增大,
15、甚至可增大100倍。在共振拉曼散射时,激发线的能M正好等于一个电子跃迁所需要的能共振拉曼散射的 Stocks过程和反stocks过程用图3 - 3 - 4表示VgandVi are Vibration 龙 ates ? ?耳 & and E are ElectronStates*EihV h h("十Normal Raman Electronic RamanResonant Raman如下:(图3-3-4正常拉曼散射、电子拉曼散射和共振拉曼散射图)2、电子拉曼散射电子拉曼跃迁发生在两个电子能级之间,如图3-3-4所示。普通样品中电子能 级间隔较大,因而入射光频率必须很大,不易
16、观察到电子拉曼跃迁。目前在稀士离子和过渡金属离子单品的低能级电子态观察到了电子拉曼跃迁。3、非线性激光拉曼效应受激拉曼效应:当入射光功率超过莫一阈值时,莫些散射谱线的强度增加,线宽 变 窄,具有和激光同样好的方向性,成为受激光谱线。逆拉曼散射效应:在一束有连续光谱的激光泵油下拉曼介质对高强度单色光产生的吸收线。其反stocks线的吸收率比stocks线的吸收率更大。超拉曼散射效应:当入射激光足够强时,出现2亿+以,苑0+心拉曼散射线,该 过程属三光子过程:吸收2个必心光子,发射一个光子沟土必)。该谱线通常很弱。拉曼诱导克尔效应:强激光0】入射时光学介质将感生双折射,当同时用频率为幻的探测激光照
17、射介质时,若(5-亿)-3 (拉曼线频率),则双折射最大。相干反Stocks拉曼效应和相干 Stocks拉曼效应:均为3光子过程.如图3 - 3 -5和图3-3-6所示。前者是25-60,后者是25-6一几过程。S 3-3-5相干反Stocks拉曼散射 图3 - 3 - 6相干Stocks拉曼散射(四)拉曼散射的偏振态和退偏度1、偏振态对于莫一个空间取向确定的分子,入射光为偏振光所引起的拉曼散射光也是偏振光,但是,散射光的偏振方向与入射光偏振方向不一定一致,它们之间的具体关系由微 商 极化率张M具体形式决定。分子的微商极化率张M虫戋的具体形式由该分子所属的对称变换性质决定。所谓对称变换是指经该
18、变换所代表的操作(如旋转、反演等),经过这些操作分子与自身重合。微商极化率可用矩阵表示,一般情况下,它是实对称矩阵,即勺;的各个分Mal均为实数。并且满足等式?二才",式(3-3-13)的矩阵形式表示就是:UM几"、耳=2ao(1 a hx1 Ct ft jwr1ICt Rp1Ct h yy1、a e1Q kyz1CL kzx Cl kzy得水分子为例,具体说明勺;CL h z'、昵2性质决定的。水分子的结构和它的振动方式如图3-3-7所示,图3-3-7水分子结构及其振动方式它的全部对称变换4个,除不动的变换(记作 E)外,有绕z轴转180°的变换G (z
19、)、x-z平面的镜反射疔巴y-z平面的镜反射坦。由于在这些对称变换下分子与自身重合,反映分子固有性质的微商极化率张M应当不变,但是感应偶极矩P、振动正 则坐标Q和外电场E的各个分M在对称变换下或者改变符号(记作 -1)、或者不改变 符号(记作+1),它们变号的具体情况列表3-3-1。表3 -3-1 F,o 乂和E在对称变换下的特征E C2(z)叭 b 坦pXP1-11-1p.1-1-11巳1111Q1111Q1111sQ1-11-1EXE1-11-1E,1-1-11E:1111根据表3 3 1振动Q3经过三个对称变换后,对应的式(3-3-31)应分别改写为:a 3,XX 1 严? -a g .
20、CL 3 直0(Z):尽)-马0”L Ex )(3-3-32)(1 1 ?、ct 3,wr ci & 5nxz 11?L(1135qcl 3R cClZ2 莎 Eg<.Ey >(3-3-33)p1 303b用、伟以CL'火一上值J (3-3-34)为了对任何Ex,心和E:以上第一式都成立,显然必须有I I I I ICL 3M = ct 3?月I=a 3zz =& 孑 P =CL 3产=0 (3 3 35)同理,根据以上第二或第三式显然还必须有0; ?网=6勺? = 0 (3-3-36)Q yz最后我们得到水分子微商极化率了的具体形式是:Ai =I X0 a
21、 3倨0000(3-3-37)据此,式(3-3-13)的各分M表达式为1 1齐心血 "弘飞2心弘(3-3-38)根据同样的讨论,我们得到虫1的表达式和相应于式(3-3-13)的分M表达式分别为:0 0、Ai =0& 5 0n_ ?v0° gJ(3-3-39)(3-3-40)比较式(3-3-38)和式(3-3-40),可以具体看到:在同一外场作用下,不同 形式的勺;将 使得所产生的感应偶极矩不相同.例如对于电场丘刖振动 Qs不产生感应 偶极矩,而振动 Q 将产生感应偶极矩*2 : 乂如对同一外场E叫振动Q和Q:虽然都产 生感应偶极矩,但是 它们的取向是不同的,前者在
22、z方向,后者在x方向。结合式(3-3 -1),根据感应偶极矩 马。的具体形式,我们还可以进一步知道散射光在空间的强度分布。例如,对于振动2偏振方向平行于x方向的入射光所感生的感应偶极矩鸟阔,辐射的散射光在x-y平面内观察光强是均匀的,偏振方向沿 Z轴:在x -z平面内观察其 光强正比于观察方向与 z轴夹角0的 正弦函数的平方,偏振方向在 x-z平面内。因此,不同分子或同一分子不同的振动的对称变 换性质的差别,在拉曼散射的偏振强度谱中是反映得很清楚的。因而通过测M偏振拉曼谱,可以获是分子及其振动的对称性质的信息,有助于区分不同类型的分子和不同的振动方式。例如:锯酸锂(LiNbOs)晶体为单轴晶体
23、 和丫轴等价,有18个振动模4Ai(R)+5A ' (IR)+qiR, IR),其中只有4A1+9E是拉曼活性的。拉曼张M为:若测M配置为:*(冼)去(字母的含义,从左到右,分别为:入射辐射的传播方向;入射辐射的电矢M方向;被观察的散射电矢M方向;散射辐射的传播的方向)根据动M守恒,瓦二焉所以瓦二庄二匚-匕可以汗算出拉曼活性:(a 0 ar 0、(0八0L0 0 J(3-3-41)(0-C-a-C0000 J0=0(3-3-42)2 0 0、(0)0 -c0 =0(3-3-43),0 龙 0,2、退偏度拉曼散射的退偏度:当电磁辐射与一系统相互作用时,偏振态常发生变化,这种现象称为退偏。
24、在 拉曼散射中,散射光的退偏往往与分子的对称性有关。散射平面:入射光传播方向和观测方向组成的平面,当入射光为平面偏振光,且 偏振方向平行于散射平面,而观测方向在散射平面内与入射光传播方向成0角时,定 义退偏度为P阿;当入射光偏振方向垂宜于散射平面时,定义退偏度QU )即:,g r ±? (3-3-44)光强Z左上标表示入射光电矢M与散射平面的关系,Z的右下标表示散射光的电矢M与散射平面的关系。Pa(&)=当入射光为自然光时,退偏度为:(3-3-45)例如,入射光沿宜角坐标的 Z轴入射,沿y方向观测时,儿种退偏度的情况。图3 3 8退偏度与散射面示意图(1)当入射光沿x轴方向偏
25、振时,散射平面为 y-z平面,其退偏度为必处精(3 3- 46)(2)当入射光沿y方向偏振时,退偏度为:“A仗(3-3-47)(3)当入射光为自然光时,退偏度为:(3-3-48)来表显而易见,退偏度可以用微商极化率张中各元素。,二次乘积的空间平均值达,对于无规取向的分子,有:xx)2 =(a xy)2 = (aj 2=(八)2 = (45(2: +4 尸)45(3-3-49)15(3 3 50)(& & )二(a yyCL zz) =(CL zzCl xx) = - (4-5(7 2 孑')45(3-3-51)虫的其它分M的二次乘积的空间平均值为零。上面各等式中的不称为
26、平均极化率,是“平均”极化率的一种度y称为各向异性率,是极化率各向异性的度这两个M在坐标转动时均保持不变,它们的具体表达式分别为:d = 一(<i xr + d 卵 +3(3 3 52)产二一 (<2 xx + & 削+(<7 宓 + & 刃 F + 总 + & zz)2 + P F+ 6(7yz -)+ 6(c7 空力2(3- 3-53)山此可得,入射光为平面偏振光时力(v / 7A =位”二 3严(兀 / 2) - I 2 _ "耳一 2 1 2 (。曲)45。+4/(3-3-54)。,(兀 2)二=-2-=>>)% +4 Y
27、 (3-3-55)入射光为自然光时:(" / 2)二(一)2+0二 _整_八 &+忑了 45八 +7/ (3-3-56)测M退偏度可以宜接判断散射光的偏振状态和振动的对称性。例如:丫 = 0方工0时心(兀/2)=心(兀/2) =0± (兀/2)二0完全偏振了 = 0 时心 S=6 / 7 X?("开/2) = Q ±(FF/2) = 3 / 4完全退偏Y工。巨HO时Q'(兀/2) ,Q,佃72)的值在。和3/4之间,久的值在。和6/7之间,这时散射光是部分偏振光。山于退偏度与微商极化率相联系,并且微商极化率具体形式山分子及其振动的对称性称
28、性质的质决定,因而退偏度也反映了分子和振动的对称性质。测M退偏度是区分振动对对称振动。一个有力方法,例如,假设莫振动拉曼线的返偏度为零,则可断定该振动必(四)CCL.(四氯化碳)分子的对称结构及振动方式1、CCL.(四氯化碳)分子的对称结构CCL (分子为四面体结构,一个碳原子和四个氯原子组成,一个碳原子在中心,四个氯原子在四面体的四个顶点。如图3-3-9:图3-3-9 CCL分子结构图物体绕其自身的莫一轴旋转一定角度、或进行反演(r -r )、或旋转加反演之后 物体乂自身重合的操作称对称操作。对称操作与前面讲到的物体的对称变换在物理上等价的。CCL1分子所具有的旋转和旋转一反演轴列于图3-3
29、-10:图3-3-10 CCL:分子的对称轴(I) 为过碳原子、立方体相对棱边中点联线的旋转-反演轴(转角2H小(II) 为过碳原子的体对角线位的旋转轴(转角为士2JI/3 ):(III)为x,y,z旋转轴(转角士 2n/2 )和旋转一反演轴(转角为士 2刃/4 )由该图可以看到,CCLi分子的对称操作有24个(包括不动操作 E)。这24个对 称 操作分别归属于五种对称素。对称素是物体对称性质的更简洁的表述。CCL.分子 的五种对称素是:E, 3碍,3身,6进,6呛士符号的具体含义:G:旋转轴,下标表示转角为 2 Ji /n i彳反演m :旋转轴方位是x, y, z轴j :旋转轴方位在过原点 0的体对角线方向,j =1,2, 3, 4P:旋转轴方位在过原点0、立方体相对棱边中点联线方向,pF, b, c, d, e, f+或-:顺时针或逆时针旋转方向上述符号前面的阿拉伯数字代表该对称素包含的对称操作数。2、CCL.(四氯化碳
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版二年级语文下册《语文园地三》示范课教学课件
- 2025年心理咨询师实操技能考核试卷:心理咨询师心理治疗技术实操案例
- 2025年物流师职业技能鉴定模拟试卷物流企业物流服务质量管理试题集
- 2025年小学英语毕业考试模拟试卷(英语实践能力综合测试题集)
- 2025年成人高考《语文》文言文阅读理解与翻译试卷
- 2025年职业指导师专业能力测试卷:职业指导师法律法规与政策理解试题
- 建筑工地穿脱防护服流程
- 高新技术研发与转让合作协议
- 房地产开发施工进度优化及风险措施
- 夏季施工现场安全防护措施
- 上海2025年上海市卫生健康技术评价中心上半年招聘16人笔试历年参考题库附带答案详解
- 建设分包合同保证金协议
- 2025年甘肃西北永新集团招聘11人笔试参考题库附带答案详解
- 自然辩证法论述题146题带答案(可打印版)
- 十八项医疗核心制度培训新版-课件
- 中医药适宜技术推广实施方案(3篇)
- 施工日志填写范本
- 如何做好银行业IT审计
- 冠脉搭桥术后护理课件.ppt
- 消防控制室值班操作手册(完整版)
- BOP管道制安通用施工方案(预备版)
评论
0/150
提交评论