第四章-1ZnS中电子陷阱能级对光电子瞬态过程的影响_第1页
第四章-1ZnS中电子陷阱能级对光电子瞬态过程的影响_第2页
第四章-1ZnS中电子陷阱能级对光电子瞬态过程的影响_第3页
第四章-1ZnS中电子陷阱能级对光电子瞬态过程的影响_第4页
第四章-1ZnS中电子陷阱能级对光电子瞬态过程的影响_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、41 ZnS电子陷阱能级对光电子瞬态过程的影响任何实际应用的晶体中,都不可避免的存在着各种杂质原子和各种晶体缺陷,它们又常常是使晶体获得某种物理性能所必需的。由于杂质原子和晶体缺陷会破坏晶体完整的晶格周期性,凡是在晶格周期性遭到破坏的地方,就有可能产生新的定域能级,这些能级可以束缚电子或者空穴。晶体中的缺陷可以形成辐射复合中心(即发光中心)或者无辐射复合中心,如果材料灼烧过程中不加入杂质,在ZnS中自身激活的发光中心就是Zn2+空位;如果加入杂质,发光中心可能就是这些杂质离子。本节即通过改变制备工艺和杂质离子,改变材料中的电子陷阱能级的深度和密度,采用微波介电谱和热释光技术,研究ZnS中的定域

2、能级及其深度和密度对光电子的影响机制。411材料制备样品1:将光谱纯10g ZnS原料掺入2g光谱纯的S和20g的SrCl作助熔剂,放入箱式炉中120烤干,将烤干的原料放入高纯氧化铝坩埚中,在1205 S保护气氛下高温灼烧两小时,取出冷却后,用去离子水清洗,去除助溶剂,烤干备用。样品2:将光谱纯10g ZnS原料掺入2g光谱纯的S和2g的NaCl作助熔剂,其他过程同样品1。样品3:在NH4Br气氛中950灼烧10g高纯的ZnS,时间为2小时,清洗备用。样品4、5:取光谱纯的10gZnS原料,加入2g NaCl和2g S,掺入0.01Eu(ZnS的质量比,Eu(NO3)3),加入适量的NaCl、

3、MgCl、SrCl作助溶剂,在高温1205灼烧3小时,制备出4、5号样品。在紫外光激发下发出蓝绿色荧光,具有明显的长余辉特征。样品6:在高纯ZnS加入适量的NaCl作助溶剂,在高温1205灼烧3小时,制备出6号材料。在紫外光激发下发出蓝绿色荧光,具有明显的长余辉特征。在制备材料1的过程中,由于所加入的助溶剂较多,助溶剂完全覆盖了ZnS原料,所合成的晶体在紫外线照射下为不发可见光的粉体。材料2的制备过程中,所加助溶剂较少,材料受到氧化作用,有较强的绿色荧光,且有较长的余辉,紫外照射下发出绿色荧光。材料3也存在较强的绿色荧光,但在室温下没有发现余辉发光。412 样品热释光测量如图1所示是三种材料的

4、热释光曲线,从图中可以看出,材料1 在-160有一发光峰,但热释光强度很小,相对值1.85。材料3的热释光峰值位置-150,发光峰相对值是76.5,对应Br-掺杂形成的电子陷阱能级。材料2热释光曲线在-148和 -77出现两个峰值,相对值分别为132、148。图1. 样品的热释光曲线Fig1. The curves of samples thermoluminescence由上可见,三种不同条件制备的样品的热释光曲线和光电子衰减曲线有明显不同,在制备材料1的过程中,由于加入SrCl助熔剂较多,助溶剂可完全覆盖ZnS材料,氧化作用较小,晶体缺陷较少,晶体内形成的电子陷阱能级也较少,因而热释光强度

5、非常小。而在NH4Br气氛中灼烧的材料中,有大量Br-进入到晶体中,形成较多的浅电子陷阱,因而有较强的热释光。以少量的NaCl作助溶剂灼烧的材料中,由于助溶剂较少,不能完全覆盖ZnS材料,在空气中的受到氧化作用,形成深浅两个电子陷阱能级。其浅电子陷阱能级和Cl-等有关,比样品3的电子陷阱能级略深且密度略大;其深能级可能是由于表面形成的ZnO和ZnS复合结构或S空位有关。423 微波介电谱测量图2(a)为样品1的自由光电子衰减曲线。其纵坐标为微波吸收功率的变化,信号强度与自由光电子数密度成正比,横坐标为衰减时间。将衰减曲线做成半对数曲线如图2(b)所示,光电子衰减出现快慢两个指数过程,快过程寿命

6、为45ns,慢过程仍为指数衰减,自由光电子寿命为312ns。 图2 ZnS(SrCl) 光电子衰减曲线图3(a)为样品3的自由光电子衰减曲线。将自由光电子数和时间关系作成半对数关系曲线,如图3(b)所示,可以看出导带光电子的衰减为指数衰减,自由光电子寿命为1914ns。图4(a)所示为样品3的浅陷阱电子的衰减曲线。将电子密度和时间关系作成半对数关系曲线,如图4(b)所示,从衰减对数曲线可以看出电子的衰减为指数衰减,寿命为2375ns。图3 ZnS(NH4Br)导带光生电子衰减曲线图4 ZnS(NH4Br)浅陷阱电子衰减曲线Fig4.The decay curve for shallow ele

7、ctron of ZnS(NH4Br)图5 ZnS(NaCl)光电子衰减曲线Fig5 .The decay curve for free photoelectrons of ZnS(NaCl)图6 ZnS(NaCl)浅陷阱电子衰减曲线Fig6.The decay curve for shallow electron of ZnS(NaC)图5(a)为样品2的自由光电子衰减曲线。将自由光电子数和时间关系作成半对数关系曲线,如图5(b)所示,可以看出导带光电子的衰减为指数衰减,自由光电子寿命为1576ns。图6(a)所示为样品2的浅陷阱电子的衰减曲线。将电子密度和时间关系作成半对数关系曲线,如图6

8、(b)所示,从衰减对数曲线可以看出电子的衰减为指数衰减,寿命为2013ns。分析上述结果,可以看出,样品1的光电子寿命最低为312ns,说明其由于氧化作用小,形成的电子陷阱能级密度低;样品2的光电子寿命为1576ns,说明其由于氧化作用形成了大量的电子陷阱能级;样品3的光电子寿命最长为1914ns,是由于Cl-进入晶格形成了大量电子陷阱能级。这些结果与热释光的研究结果相一致。同时比较材料2和材料3的光电子寿命,二者仅相差200ns,而材料2具有两个深度不同、密度有相对较大的能级,说明深能级对光电子瞬态过程影响很小。 413 制备不同电子陷阱能级分布的ZnS发光材料通过改变制备条件,可以在更宽的

9、范围调整ZnS的电子陷阱能,制备出具有不同能级分布的ZnS材料,如图7、8所示。这些具有不同深度陷阱能级的材料为深入研究电子陷阱能级对电子运动的影响提供了跟广泛的素材,也为进一步合成实用化的长余辉发光材料提供了科学依据。 图7 样品4的热释光曲线图8 样品6的热释光曲线图7是样品4、5的热释光曲线;图8是样品6的热释光曲线;其具体数据如表1所示。可以看出,通过改变制备条件和杂质,获得了具有不同深度和密度的电子陷阱能级。 表1 热释光峰温度和峰值强度样品编号添加量T1I1T2I2T3I34Eu(NO3)3+ZnS(杂质)-151144-6414725137.55Eu(NO3)3+ZnS(杂质)-158144.5-6814720117.756纯ZnS+NaCl-146109.5-59143.751878.5本节结论:在不同条件下制备的ZnS材料中,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论