八年级数学上册(最新北师大版)精品导学案【第五章二元一次方程组】_第1页
八年级数学上册(最新北师大版)精品导学案【第五章二元一次方程组】_第2页
八年级数学上册(最新北师大版)精品导学案【第五章二元一次方程组】_第3页
八年级数学上册(最新北师大版)精品导学案【第五章二元一次方程组】_第4页
八年级数学上册(最新北师大版)精品导学案【第五章二元一次方程组】_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第五章二元一次方程组导学案【学习课题】§ 5.1 认识二元一次方程组班级:姓名:【学习目标】1.理解二元一次方程的定义和二元一次方程的解。2. 会判断二元一次方程和二元一次方程的解。3. 会求简单的不定方程的解。【学习重点】1.会判断二元一次方程和二元一次方程的解。2. 会求简单的不定方程的解。【学习过程】(一)学习准备:1. 含未知数的等式叫,如:2x 1 32. 若方程中 只含有一个未知数,并且未知数的次数为 1的整式方程,这样的方程叫,如:3x 4 7x 83. 满足方程左右两边未知数的值叫做方程的 4. 若x 2是关于x一元一次方程ax 2 8的解,则a=5. 方程x y 8

2、是一元一次方程吗? ;若不是,请你把它取名叫方程。F 注意等号 J(二)解读教材:阅读教材P103 P104,试解决下列问题:对齐.老牛小马 26. 老牛与小马分析:审题A :数量问题C:设老牛驮了 x个包裹,小马驮了 y个包裹。老牛1 (小马1)7. 二元一次方程:5定义:像方程X y 2和x 1 2(y 1)等这类方程中,含有 个未知数,并且所含未知数的项的次数都是的 方程叫做。即时练习:下列方程是二元一次方程的是 2x 3 : 5xy 10 : x2yy5 3x y z 0 : 2x y 3 ; x评析:二元一次方程的左右两边必 须是 式;方程中必须含个未知数;未知项的次数为,而不是未知

3、数的次数为18.二元一次方程的解:定义:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一 个即时练习:(1)请找出是二兀一次方程x y 8的解的是: 8'2;®5的解,求a的值已知:2是二元一次方程ax 2y9.二元一次方程组及方程组的解:定义:含有个未知数的两个 方程所组成的一组方程,叫二元一次方程组。即时练习:下列是二元一次方程组的是() x y 6 : X 2 ::2 : xy 2 : x y 3。x y 3y 3yy 3x z 4定义:二元一次方程组中各个方程的 叫做这个二元一次方程组的解。即时练习:在下列数对中:(1) X 2,X5,(3)X1, X5

4、,是方程xy 0y 2,y0, y 1, y2,的解的是是方程x 4y 5?的解的是;既是方程x y 0的解,又是方程x 4y 5的解的是.(填序号)(三)挖掘教材10. 方程xm1 y2n5 3是二元一次方程,则m=, n二。11. 若mx 4y 3x 7是二元一次方程,则m的取值范围是()A. m 2 B. m 0 Cm3 D m 112. 二元一次方程2x y 7的正整数解有( )组A 1 B 2 C 3 D 4(四)反思小结:二元一次方程中含有 个未知数,并且所含未知数的项的次数都是 的整 式方程;它的形式可以写成:ax by c或ax by c 0 (其中a 0, b 0);二元 一

5、次方程的解有 个。【达标检测】1. 若x2m2n 2 2ym 51是关于x、y的二元一次方程,则m=_ , n=。2. 若满足方程组2x y 3的y的值是1,则该方程组的解是 .4x 5y 13. 在(1) x 3, (2) x 1,(3) x 0这三对数值中, 方程x 2y 3的解,y 0,y 1, y 1方程2x y 1的解,因此方程组x 2y 3的解.(填序号)2x y 1【学习课题】 § 5.2求解二元一次方程组(1)代入消元法班级:姓名:【学习目标】学会用代入消元法解二元一次方程组。【学习重点】会用代入法解二元一次方程组,。一、学习准备1下面方程中,是二元一次方程的是()A

6、、xy x 1 B、x2 2 3x C、xy 1 D、2x y 12.下面4组数值中,是二元一次方程2x y 10的解的是()x 2A、 y 6x 3B、 y 4x 4x 6C、 y 3D、 y 23兀一次方程y2v 102;的解是()x 4A、 y 3x 3B、 y 6 x2 x 2C、 y4D、 y64.如:y 2x 5叫做用x表示y , x 3y 9叫做用y表示x。(1 )你能把下列方程用 x表示y吗? x y 2则y二,2x y 3则y=。(2)你能把下列方程用y表示x吗? x y 2则x =,4y x 1则二、解读教材程,想办法变成一元一次我们只学过一元一次方x =。3x 2y 14

7、 (1)5例1解下列方程x y 3解:把(2)代入(1),得3(y 3) 2y 14(注意把(1)中的x换为y+3时要加括号,因为y+3这个整体是x)3y 9 2y 145y 5y=1将y=1代入(2),得x=4所以原方程组的解是: 4即时练习(1) x 2y 10 y 2x6.( 1)、上面解方程组的基本思路是 消元”一-把 二元”变为 ”。(2)、主要步骤是:将其中一个方程中的某个未知数用含另一个未知数的代数式表示出来; 将这个代数式代入另一个方程中, 从而消去一个未知数,化二元一次方程组为一元一次方程式; 解这个一元一次方程; 把求得的一次方程的解代入方程中, 求得另一个未知数值,组成方

8、程组的解。这种解方程组的方法称为代入消元法。简称代入法7例2x y 2x 1 2(y 1)(1)解:把方程(1)变形为y = x-2用代入法解二元一 次方程组的步骤:编号表示 代入解方程代回求另一个未 知数值答语解方程组匕;打362x 2 y 6即时练习(1) y 2xy53x 2 y 9(3) x 2 y 3把(3)代入(2),得 X 1 2(x 21)x+1 =2x 6x=7把x=7代入(3),得y=5x 7所以原方程组的解是 y 5即时练习2x 3y 12 4x 3 y 1(1) x y 5(2) y x 1三、挖掘教材 7怎样选择四、反思小结这节课我们学到了什么?【达标检测】1.把下列

9、方程用X表示y, ( 1) 3x y 2则 ( 2) 5x y 4则把下列方程用y表示x ( 1) x 3y 2则 (2)2x 3y 2则4x y 142解下列方程组(1)y 3X(2) 2m 3n 12【学习课题】§ 5.2求解二元一次方程组(2)代入消元法【学习目标】会熟练运用代入消元法解二元一次方程组【学习重点】灵活用代入法解二元一次方程组,【侯课朗度】代入消元法的概念及步骤,一、学习准备1把下列方程用X表示y , ( 1)x y 2( 2) 2x 5y 11把下列方程用y表示x ( 1)2x 3y 2( 2)3x 5y 21x y 52.解下列方程组(1) 2 x y 8二、

10、解读教材解:由方程(215y3x 5 y 213.例 1. 2x 5 y把(3)代入("得y =3把y=3代入(3)得x=2所以原方程组的解是y即时练习2x 3y(1)3x 4y1318(2)5 x 2x3y3y三、挖掘教材4.运用x 3 例 2 x?32解:设心2m n 3m n 1口 33圧13(1)即时练习:J 54J 14n则原方程组变为:解方程组得m 1把n 2代入专n中解得x 5 8所以原方程组的解是例3已知 y 1是方程组 Xx byb 3的解,则a,b的值是多少?x ia b 2(1)解:把 y 1代入方程组中得 1 b 3(2)由(2)得b 2把b 2代入(1)得a

11、 4所以,a 4,b 2即时练习(1)已知 y 2是方程组 3ax by 1的解,贝S a,b的值是多少?三、反思小结1. 解二元一次方程组的思路是消元,把二元变为一元2. 解题步骤概括为三步即:变、代、解、3. 由一个方程变形得到的一个含有一个未知数的代数式必须代入另一个方 程中去,否则会出现一个恒等式。【达标检测】1解下列方程组3x 4y 5 6x 2y 14(1)2x 3y 8(2) 3x 3y 152 22(3) 2(x 3) 3y 85x 2( y 3) 182.若已知 y 1 1是方程组 等式基本性质是:X 3;y3 4的解,则ab的值是多少?【学习课题】 § 5.2求解

12、二元一次方程组(3)加减消元法【学习目标】1.会用加减法解二元一次方程组2.掌握加减法解二元一次方程组的一般步骤【学习重点】会用加减法解二元一次方程组【课时类型】技能训练一、学习准备:1. 用代入法解方程组3x 5y 212x 5y 11 二、解读教材3. 观察上题,两方程有何特点?除了代入消元法你还能有其他的方法消元吗?注意方程中的5y与中的-5y是相反数,再请注意:两个等式的两边也同时分别相加或相减,等式仍成立吗?解:把两个方程的两边分别相加,得:,解得:x=把 x的值代入,得,解得 y=所以方程组3x 5y2x 5y21的解为114.例1解方程组2: 7 71解:-得: y =把y 代入

13、得: x 原方程组的解是5.即时练习:解方程组7x 2y 39x 2y 195.这种解方程组的方法叫做加减消元法,解方程组4s 3t 5 3s t 7 简称加减减法骤:编号观察,确定要先消去的未知数。把选定的未知数的系数变成相等或互为相反数。把两个方程解:方程X 3,得9s 3t 21相加(减),求出一个未知数的 值。代,求另一个未知数的 值。答语。+得:解得:s 把s代入得t原方程组的解为即时练习:解方程组4s 3t 52s 2t 5三、挖掘教材: 当两个方程中某一个未知数的系数是相同或互为相反数时,直接把两个方程 的两边相加或相减就可以消去一个未知数,达到消元的目的。当两个方程中某一个未知

14、数的系数的绝对值成倍数时,需把其中一个方程的 两边同时乘以一个适当的整数,让这个未知数的系数的绝对值相等。若两个方程中两个未知数的系数不成倍数时,需要把两个方程都乘以适当的 书,以便某个未知数的系数的绝对值相等,这种情况需要先确定消哪一个未知数,一般先消去系数简单的即时练习:解方程组5x 6y 97x 4y 5四、反思小结:力口减法的基本思路是 主要步骤为:【达标检测】:用加减法解下列方程组。 3x 2y 11 6x 5y 3 5x 6y 99x 2y 496x y 157x 8y 5【学习课题】§ 5.2求解二元一次方程组(4)用适当的方法解二元一次方程组【学习目标】1.能灵活选择

15、“代入法”和“加减法”解二元一次方程组2. 会解系数比较复杂的方程组。【学习重点】 对百分比系数和小数,分数系数方程组的整理。【课时类型】习题学习一、学习准备:1、用两种方法解下列方程组。法一、法二、3x 2y 15x 4y 9草稿纸上化简过程如下:去分母得:3(2x y) 2(2x y) 6去括号得:6x 3y 4x 2y 6合并得:10x y 6典例示范。例1.解方程组2x y 2x y24(2x y)5(2X草稿纸上去括号合并就可以了分析解这个方程组的难度在于式子比较复杂,关键在于化简解:原方程组化简为:10x y 62x 9y 8先把系数化为整数即时练习:解方程组3(xx _y35y)

16、 2(x13y)150.5x 0.8y 4.70.6x 1.2y 6.62、例2.解方程组x y 28°J提示:注意大数的处理96%x 64%y 2800 92%三、归纳总结方程组中的方程系数比较复杂时,我们应该想办法利用等式性质先作处理,然后再利用两种消元方法解化简后的方程组。与同组的同学交流你的感想【达标检测】用适当的方法解方程组。1. x y 602.x 1 y 2 o3430%x 60%y 10% 60x 3 y 3143124.x 2y2x 13 2( x y) 3y 7. 4(x 9)3(y 2)【学习课题】§ 5.2求解二元一次方程组(5)习题课班级:姓名:【

17、学习目标】1.会熟练解二元一次方程(组)。2. 会求二元一次方程的特解。3. 会求二元一次方程(组)中待定字母的值。【学习重点】1.会求二元一次方程的特解。2. 会求二元一次方程(组)中待定字母的值。【侯课朗读】二元一次方程的相关概念【学习过程】一、课前准备1. 叫做二元一次方程。2. 叫做二元一次方程的解。3. 叫做二元一次方程组。4. 叫做二元一次方程组的解。5. 解二元一次方程组的基本思想是,基本方法有和。二、典型例题例1.二元一次方程x 2y 12的正整数解有 。解:因为方程的解都为正整数,所以:y=1时,x=10 (符合题意);y =2时,x =8 (符合题意);y =3时,X =6

18、 (符合题意);y =4时,x =4 (符合题意);y=5 时,x=2 (符合题意);y=6时,x=0 (符合题意)所以方程的正整数解为:x 10x 8x6x 4x2 y 1y 2y3y 4y5例2.若(2x-y ) (x-2y)=11,且x. y都是正整数,求x, y.例3.已知关于x, y的方程组x y 6m的解也满足2x-3y=11,求m的值,并求 x y 10m方程组的解。【达标检测】1.下列方程xy 2x y 5,1 y 1 , 5x2 y 0 , x y 20,上丿5x23中二元一次方程有个。2.若3x2m n 1 5ym1 3是关于x和y的二元一次方程,则m=,n=。5mn125

19、mn1366,b=(2)3. 已知x 0.5是方程组ax 3y 5的解,则a = y 12x by 1。4.解下列方程组。2x 3y 7 (两种方法解)3x y 75. (2007,山西)若 x 2y 【学习课题】§5.3应用二元一次方程组鸡兔同笼【学习目标】 能找出实际问题中的等量关系,列出二元一次方程组,解决简单 的实际问题。【学习重点】 将题目中的等量关系进行转化,列出二元一次方程组。【候课朗读】 则 x+y=2x y 96. 已知y 3和X 7是方程ax2+by+3=0的两个解,求a- b的值7. (2006,济南)若 x 2是方程 3x-3y=m 和 5x+y=n 的 公共

20、解,则y32m-3n=.8. ( 2007,武昌)如果方程组kx4x(k3y1)y一 : 学 习 准 备 : 1. 回 忆 列 一 元 一 次 方 程 解 应 用 题 时 的 常 用 步 3的解 x, y 相等,则 k 的值为骤:_、_、_、_、_、_。2 . 二元一次方程组的解法有:Ox3.解方程组x y 35y 532x 4y 94x;y 1二.解读教材4.典型例题:例1阅读课本P115完成“雉兔同笼” 题的分析:A题型:B等量关系鸡头+兔头=C:设鸡有x只,兔有y只。 D 列则鸡头有兔头有鸡脚有兔脚有鸡脚+兔脚=请你完成本题的标准解答5.即时练习1.(只写分析)若两个数中,较大数的3倍是

21、较小数的8倍,较 大数的一半与较小数的差是4,那么较大的数是多少?分析A题型:等量关系;列方程组:例2:以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺,绳长,井深各几何?分析:题目大意是A题型:B |等量关系:+fD列$丄C设绳长x尺,井深y尺|+=解:三. 挖掘教材6.即时练习2. 4 辆小卡车和5辆大卡车一次共可以运货物27 吨,6辆小卡车和10辆大卡车一次共可以运货物 51吨,问小卡车和大卡车每辆 每次可运货物多少吨?分析A题型:B等量关系;C设D列方程组:四、反思小结 今天,我们学习了列方程组解应用题,应注意的是: 解应用题的格式。解应用题时,等量关系如何去找?【达标检测

22、】7今有鸡兔若干 , 它们共有 24 个头和 74 只脚, 则鸡兔各有()A.鸡10兔14 B. 鸡11兔13 C. 鸡12兔12 D. 鸡13兔118一队敌人一队狗 , 两队并成一队走 ,脑袋共有八十个 , 却有二百条腿走 , 请君仔 细数一数,多少敌军多少狗?9某制衣厂某车间计划用 10天加工一批出口童装和成人装共 360件, 该车间的 加工能力是:每天能单独加工童装 45件或成人装 30 件。(1)该车间应安排几天加工童装 , 几天加工成人装,才能如期完成任务? (2)若加工童装一件可获利 80元, 加工成人装一件可获利 120 元, 那么该车 间加工完这批服装后,共可获利多少元?11某

23、高校共有 5 个大餐厅和 2 个小餐厅 , 经过测试 , 同时开放 1 个大餐厅 ,2 个 小餐厅,可供 1680名学生就餐;同时开放 2个大餐厅,1 个小餐厅,可供 2280名 学生就餐。(1) 求 1个大餐厅 ,1 个小餐厅分别可供多少名学生就餐;(2) 若 7个餐厅同时开放 ,能否供全校 5300名学生就餐 ?请说明理由。学习课题】§5.4应用二元一次方程组增收节支【学习目标】 能找出实际问题中的等量关系,列出二元一次方程组,解决简单 的实际问题。【学习重点】用列表的方式分析题中的各量关系,加强学生列方程组的技能训 练。【候课朗读】一。学习准备1. 利润二。2阅读课本P117,

24、完成“总产值、总支出”题的 分析:A题型:B等量关系: 去年(总值)-去年(总支)=C设去年总产值x万元,总支出y万元D列则今年总产值万元,总支出万元今年(总值)-今年(总支)=解二. 解读教材3. 典型例题例1:医院用甲,乙两种原料为手术后的病人配制营养品,每克甲原料含0. 5单 位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人 每餐需要35单位蛋白质和40单位铁质.那么每餐甲、乙两种原料各多少克恰好 满足病人的需要? 分析:A题型:交叉数量型关系B等量关系:甲(蛋白质)+乙(蛋白质)=C:设甲原料x克,乙原料y克。 D现:,则甲原料含蛋白质 乙原料含蛋白质* .甲

25、原料含铁 乙原料铁 甲(铁)+乙(铁)二解:三. 挖掘教材4. 有甲,乙两种商品,甲商品的利润率为 5%乙商品的利润率为4%共获利46 元,价格调整后,甲商品的利润率为 4%乙商品的利润率为5%共获利44元, 则两种商品的进价各为多少?A题型:交叉数量型关系| B等量关系 甲(调整前的利润)+乙(调整前的利润)C:设甲种商品的进价为 D 列 乙甲种商品的进价为y元。:则:甲(调整前的利润)元 甲 (调整后的利润)+乙(调整后的利润)甲(调整后的利润)元乙(调整后的利润)元解:四. 反思小结5. 请你写出今天学习的收获(至少两条):【达标检测】6. 某厂第一季度产值为m万元,第二季度比第一季度增

26、加20%则两季度产值共 有() 2 A. (m+20% 万元 B.(m+1)20% 万元 C.m(1+20%)万元 D.2.2m 万元7某校八年级三班 ,四班共有 95 人,体育锻炼的平均达标率为 60%,如果三班 的达标率为 40%,四班的平均达标率为78%,则三班有 人,四班有人.8某商店准备用两种价格分别为每千克 18 元和每千克 10元的糖果混合成杂拌 糖果出售, 混合后糖果的价格是每千克 15元。现在要配制这种杂拌糖果 100千 克,需要两种糖果各多少千克?9某同学的父母用甲 , 乙两种形式为其存储一笔教育准备金 10000元,甲种年 利率为 2.25%,乙种年利率为 2.5%,一年

27、后,这名同学得到本息和共 10243.5 元, 问其父母为其存储的甲 , 乙两种形式的教育准备金各多少钱?【学习课题】§ 5.5 应用二元一次方程组一一 里程碑上的数【学习目标】1利用二元一次方程组解决数字问题和行程问题,培养学生分析 问题和解决问题的能力。2:初步体会到方程组解决实际问题的一般步骤。【学习重点】体验列方程组解决实际问题的过程,理解题意,找出适当的等量关系,并列出方程组。一、学习准备:1. 一个两位数,十位数字为a,个位数字为b,则这两个数表示为。2. 一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三数表示为。二、 解读教材。3. 奇怪的数字 阅读教材P

28、120引例,完成下列填空:问题(1):小明爸爸骑着摩托车带着小明在公路上 行驶。 设小明在12.00时看到的十位数字是x,个位数字是y,那么问题(2):在12.00时小明看到的数字可表示为 。根据两个数字和是7,可列出方程为 。问题(3):在13.00小明看到的数字可表示为 。故12.0013.00间摩托车行驶的路程为。问题(4):在14.00小明看到的数字可表示为 。故13.0014.00间摩托车行驶的路程为。问题(5) : 12.0013.00与13.0014.00两段时间内摩托车的行驶路程,相应的方程为。问题(6):你能列出方程组并解之吗?4. 两位数的应用题有一个两位数,数值是数字和的

29、 5倍,如果数值加9,其和为这个两位数颠倒 过来的两位数,求原来的两位数。分析:审题A:数字问题| B *:数®=5X数字和C:设个位数为x 一=>十位数字为y。+ 数值+9*=两位数颠倒过来写出标准解答过程:三、挖掘教材:5. 数值问题:数的表达及调整:两位数xy表达为,调整后为:yx表达为。(x为一位数,y为一位数)三位数xy表达为,调整后为:|yx表达为O(x为两位数,y为一位数)x丄表达为,调整后为:yx表达为O(x为两位数,y为两位数)四位数6阅读教材P121例,回答下列问题: 分析:审题A:数字问题| B 、 C设较大的两位数为»较小的两位数为y。写出标准

30、解答过程:四、反思小结通过对上述两个问题的解决,你认为列二元一次方程组解决问题应该注意些什么问题?步骤是怎样的呢?【达标测评】1. 一个两位数,减去他的各位数之和的 3倍,结果是23,这个两位数除以它的各位数数之和,商是5,余数是1。这两位数是多少?2. 小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个 0,得到的和为341。原来两个加数 是多少?【学习课题】§ 5.6二元一次方程与一次函数【学习目标】1.初步理解二元一次方程与一次函数的关系。2. 能利用二元一次方程组确定一次函数的表达式。【学习重点】1.用图象法解二元一次方

31、程组。2. 二元一次方程组与一次函数的关系。3. 从图象等信息,获得确定一次函数表达式的方法。【学习过程】一、学习准备:1. 形如 (其中k、b为常数且k 0 )的函数称为一次函数;当b 0时,函数的关系式为 k 此时,y是x的 数。2. 一次函数y kx b (k工0)是一条与直线 y kx (k工0)的直线, 映直线的倾斜程度,b是直线与y轴交点的。3. 二元一次方程的一般表达式是 (其中a、b、c为常数,且a 0,b0) o二、解读教材:4. 方程x y 5的解有多少个?写出其中几个。5. 在直角坐标系中分别描出以这些解为坐标的点,并检验它们在一次函数y x 5的图象上吗?6. 你能在直

32、线yx 5上任取一点,它的坐标是方程x y 5的解吗?7. 经过你的认真思考,你发现以方程x y 5的解为坐标的点组成的 一次函数yx 5的图象。猜一猜:一次函数y x 5与y 2x 1的图象的交点坐标与方程组 y 5的解2x y 5是什么关系?做一做:8.在同直线坐标系中画出直线y x 5 ,y 2x 1并找出交点坐标。9.快速解方程组 x y 52x y 110.你的猜想正确吗?你发现了什么?每个二元一次方程都可以看成 一次函数,反之,亦然。11.若直线y 3x 1与y x k的交点在第4象限,求k的取值范围12.在平面直角坐标系中,如果点 x,4在连结点(0, 8)和(-4 , 0)的线

33、段上, 求x的值。14、一次函数y kx b的图象过点(1,3),( -2,-3),求这个一次函数解析式。15.已知一个一次函数y kx b的图象经过点(-3 , -2), (-1 , 6)两点,(1) 求此一次函数的解析式。的三角形的(2) 求此函数图象与坐标轴围成的三角形的面积。16.已知直线y ax 2 ( a V 0)与两坐标轴围成 面积为1,求常数a的值。反思小结:1. 求函数解析式的一般过程,可以简单称为:一列、二代、三解、四还原2. 利用图象求函数解析式,一般先找准图象上特殊点的坐标。3. 必须熟悉函数y kx b的性质,即k、b的意义。【学习课题】§ 5.7用二元一次

34、方程组确定一次函数的表达式【学习目标】1.掌握待定系数法。2. 能利用二元一次方程组确定一次函数的表达式。【学习重点】1.二元一次方程组与一次函数的关系。2.从图象等信息,获得确定一次函数表达式的方法。【学习过程】一、学习准备1. 二元一次方程组与一次函数的联系有 2. 二元一次方程组的解法有 二、解读教材阅读教材P126,完成问题。三、基础训练1. 下列一次函数中,y的值随x值的增大而增大的是()A. y=-5x+3B. y=-x-7C. y=. 3x - 5D . y=-、- 7x +42.在一次函数ym 1 x 5 中,y的值随x值的增大而减小,则m的取值范围是()A. m 1 B.m

35、1C . m 1 D . m 13.若一次函数y二2x + b 的图象经过点 A(-1,4),则b=;该函数图象经过点B(1,_)和点C (_, 0)。6.直线I是一次函数y=kx+b的图象,(1) k=, b=。(2) 当 x=30 时,y=。(3) 当 y=30 时,x= 四、例题展示【例题1】已知一次函数的图象经过点 A (- 1, 3)和点B(2, 3),求这个 一次函数的解析式。解:设一次函数表达式为, 将A ( 1, 3), B (2, 3)代入得件确定解析解得 k=b=所以一次函数表达式为像例1这样先设出函数解析式,再根据条式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法【例题2】:某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论