


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、旋转课题:第23章旋转小结 序号25学习目标:1、知识和技能: 了解图形的旋转的有关概念并理解它的基本性质 了解中心对称的概念并理解它的基本性质 了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法 2、过程和方法: (1)让学生感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题 (2)通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题 (3)经历复习图形的旋转的有关概念和性质,分析不
2、同的旋转中心,不同的旋转角,出现不同的效果并对各种情况进行分类 (4)复习对称轴和轴对称图形的有关概念,通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容 (5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固 (6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容 (7)复习平面直角坐标系的有关概念,通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题 (8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计 3、情感、
3、态度、价值观: 让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情学习重点: 1图形旋转的基本性质 2中心对称的基本性质 3两个点关于原点对称时,它们坐标间的关系学习难点: 1图形旋转的基本性质的归纳与运用 2中心对称的基本性质的归纳与运用导学过程一、课前预习:1、什么是旋转?旋转有哪些性质?2、中心对称和中心对称图形有哪些联系3、关于原点对称的两
4、个点的坐标有什么特点?二、课堂导学:1.情境导入:导学案P70“教材导读”出示任务,自主学习: (1)了解图形的旋转的有关概念并理解它的基本性质 了解中心对称的概念并理解它的基本性质 了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法 (2)让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识 3。合作探究: (一)、旋转变换 1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋
5、转变为点P,那么这两个点叫做这个旋转的对应点。 2、旋转的性质 (1)对应点到旋转中心的距离相等。(旋转中心就是各对应点所连线段的垂直平分线的交点。) (2)对应点与旋转中心所连线段的夹角等于旋转角。 (3)旋转前、后的图形全等。 3、作旋转后的图形的一般步骤 (1)明确三个条件:旋转中心,旋转方向,旋转角度; (2)确定关键点,作出关键点旋转后的对应点; (3)顺次连结。 4、欣赏较复杂旋转图形 图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。 5、有关图形旋转的一些计算题和证明题 (二)、中心对称 1、中心对称的定义 把一个图形
6、绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。 2、中心对称的性质 (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平所平分。 (2)关于中心对称的两个图形是全等形。 3、作中心对称和图形的一般步骤 (1)确定“代表性的点”; (2)作出每个代表性的点的对应点; (3)顺次连结。 (三)、中心对称图形 1、中心对称图形的定义 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就
7、是它的对称中心,过对称中心的直线,可以把图形分成完全重合的两部分。 2、中心对称图形的识别 常见的几何图形,如:线段、等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形、圆,26个大写英文字母(7个),正多边等要会识别,并指出对称中心。 3、两个图形成中心对称和中心对称图形的区别与联系 区别: (1)中心对称是指两个图形的位置关系,而中心对称图形是指一个具有特殊形状的图形。 (2)研究对象的个数不同,中心对称指两个图形,而中心对称图形只研究一个对象。 (3)中心对称图形的对称中心是图形自身或内部的点,而两个图形关于某点成中心对称,对称中心不定。 联系: 两者均是关于点的对称,它们之间无绝对界限,当把两个图形看作整体时,即为中心对称图形,若把中心对称图形看作两部分则两部就可以关于一点成中心对称。 4、中心对称图形和轴对称图形的关系 (1)对称轴条数为正偶数的轴对称图形是中心对称图形,对称中心是对称轴的交点; (2)对称轴条数相互垂直的轴对称图形是中心对称图形。 (3)轴对称图形是翻转180°与自身重合,而中心对称图形是旋转180°与自身重合。展示与反馈导学案P70页“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿物加工过程中的物理化学变化考核试卷
- 豆腐干的品质提升技术考核试卷
- 水果销售经典话术
- 数字智慧方案5498丨商业综合体智能化方案共
- 豆类作物种植的农业土地资源利用考核试卷
- 火力发电厂运行监控与故障处理考核试卷
- 2025年板材无模多点成型压力机合作协议书
- 数字智慧方案5445丨企业碳资产管理案例分享北京环境交
- 土木工程-建筑工程施工图预算(课件)
- 杭州安全运维试学
- 2024年四川省成都市中考物理试卷附答案
- 2024年保安员证考试题库完整
- DL-T5190.1-2022电力建设施工技术规范第1部分:土建结构工程
- 教务管理系统调研报告
- 2024年上海市中考英语口语复习-交际应答
- 毕业论文-绞肉机的设计
- TD/T 1044-2014 生产项目土地复垦验收规程(正式版)
- 新中国史智慧树知到期末考试答案章节答案2024年大连海事大学
- 敬畏生命-道德与法治市公开课一等奖省赛课微课金奖课件
- 武汉市2024届高中毕业生四月调研考试(四调)政治试卷(含答案)
- 多发伤救治及进展
评论
0/150
提交评论