用二氧化碳激光制作石英光学微球腔_第1页
用二氧化碳激光制作石英光学微球腔_第2页
用二氧化碳激光制作石英光学微球腔_第3页
用二氧化碳激光制作石英光学微球腔_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【实验名称】用CO激光制作石英光学微球腔【实验目的】1了解二氧化碳激光器的工作原理2了解光学微球腔的特性3.掌握利用二氧化碳激光器制作石英光学微球腔的方法【实验仪器及材料】二氧化碳激光器、氦-氖激光器、透镜、全反射镜、分束镜、显微观察系统、读数显微镜 石英光纤、氢氟酸【实验原理】1. 光学微球腔光学微腔是具有极高品质因数 (Q> 109)和极低模式体积的光学介电谐振器,形状有圆柱、圆盘、圆环、球等多种,线度约5卩rm- 500卩m,由于制备方法不同,所用的介电材料也有所不同,目前 应用较多的是使用二氧化硅等光学玻璃制备的球形微腔。光学微腔的特性来源于其独特的回音壁模 式(Whisperi

2、ng Gallery Mode ,简称WGM ,光波在微腔内表面上不断进行全反射,从而被约束在腔内并沿腔的周边绕行,几乎没有能量损失),可应用在要求极细线宽,极高能量密度和亮度或极细微 探测能力的场合,例如腔体量子电动力学 (Cavity Quantum Electrodynamics ,简称CQED)、窄带光 学滤波、非线性光学、极低阈值激光器、单光子光学双稳态以及辐射场测量。近年来,随着纳米制造技术的发展以及近场耦合技术的提高,微型光学微腔更是得到日益广泛的研究和应用,在传感器领域的应用,主要是利用微型谐振腔自身内部或者自身与外界相互作用的灵敏反映,例如频率和光 谱的变化。由于微球谐振腔的

3、作用,使得生物传感器、温度传感器和加速度传感器的精度和灵敏度 等性能指标大大提高。制作微球形光学谐振腔的方法有很多种。传统上,常采用光刻蚀方法制作固相谐振腔以研究腔 体的激光辐射特性,但这种方法工艺复杂,所需的设备成本昂贵。还有使用耐高温、抗腐蚀陶瓷坩 埚熔炼玻璃和通过感应加热的熔制工艺,这种方法会使坩埚载体在熔炼过程中的腐蚀对发光玻璃的 污染。此外,还有采用气体喷吹、悬浮液滴的方法制作液相谐振腔。本实验通过对石英光纤末端的烧蚀获得圆对称光学谐振腔。在烧蚀过程中,由于液化石英表面 张力作用,将在光纤悬垂底端收缩成均匀球腔。通过控制烧蚀激光的功率与烧蚀时间,可以获得不 同直径大小的微米级的对称石

4、英球腔。2.实验装置光路图由CQ激光器、透镜1、透镜2、全反射镜1、全反射镜2、全反射镜3、分束镜、石英光纤 以及显微监视器。激光束1经过透镜1后聚焦于光纤熔融点附近,光束 2经过透镜2后也聚焦于光纤熔融点。如果上面的双光路石英熔融光路具有很好的对称性就能保证石英光纤熔融成球后的对称 性。本实验所采用CQ激光器发射的激光波长为 10.6um,其最大CV功率可达40w,因此用它就可以来 很好的完成光纤的熔融工作了。由于透镜的存在,在实际的烧蚀过程中,10W的功率差不多就能很好的熔融光纤了。实验中通过调节激光器的电压大小来控制其输出功率。光纤裸纤一般分为三层:中心高折射率玻璃芯(多模光纤芯径一般为

5、50或62.5 pm,单模光纤芯径约6 pm),中间为低折射率硅玻璃包层 (直径一般为125 pm),最外是加强用的树脂涂层。在目前的 制造技术下,为了获得不同的折射率,主要采用向SiQ2中掺加二氧化锗获得高折射率的光纤芯。由于光纤的直径很小,要想对光纤的熔融过程有一个很好的观察,我们使用显微观察系统来对其进行 监视。实验中,我们采用的是 10X 10倍显微镜的镜筒部分,将其固定在三维调整架上,并调节其位 置来观察光纤的熔融过程。3.光路的搭建和调试本实验采用CQ激光器作为烧蚀光源,但 CQ激光波长为10.6 jjm,为不可见光,这就给光路的调 试带来的一个难题。为了方便地调试光路,可用一个可

6、见光源先与CQ激光同轴耦合后,再撤去 CQ激光,然后用可见光来置换 CQ激光完成光路的调试工作,光路如图2所示:本实验中选择使用 He-Ne激光器来置换激光完光路的调试工作。要用He-Ne激光器置换CQ激光器,首先就得调节 He-Ne激光与CQ激光同轴耦合,然后关闭CQ激光器,以He-Ne激光作为基准 光源进行光路调节。整个光路的调试,搭建,将直接影响到实验结果的成功与否。具体搭建步骤如 下: 首先将CQ激光器轴调节至水平;然后再He-Ne激光器光轴水平,通过调节固定He-Ne激光器的角架高度使得其与CQ激光光轴处于同一高度;调节He-Ne激光器与CQ激光器同轴:首先用架子固定两张张纸屏,然后

7、移至光路中,打开 CQ激光器发射激光,分别在两张纸屏上烧蚀出两个点A B,注意不要移动两个纸屏的位置。关闭CQ激光器,再打开He-Ne激光器,并在光路中加入全反射镜 2,通过调整全反射镜 2的偏 转、仰俯,使 He-Ne激光器光精确通过 A、B两个点,这时耦合完成。p (厚度与分在光路中加上全反镜 1、4、5,并在全反镜4前与轴成45度角加偏置补偿玻璃束镜相同,均为 2mm,目的是为了补偿 CQ激光器通过分束镜后产生的平移;为了使He-Ne激光器光轴水平,我们通过调节全反镜光器出射光线在同一高度上;加上小孔光阑S1、S2,调节全反镜3,使回光通过 S1、S2;加上分束镜,调节其位置及偏转、仰俯

8、,使保有分束镜分出的激光向上的那部分也是水平的加上透镜1,调节其偏转、仰俯,使回光通过通过S2;完成上述步骤后,试验光路的搭建就基本的完成,S2,偏置补偿镜 P以及He-Ne激光器。整个实验过程中一共有两次耦合过程。上述步骤中的1 3完成了 He-Ne激光光路与CQ激光光路的耦合;还有一个耦合就是光路经分束镜反射、透射后的两束光路的双光路相向耦合。整个实验 的关键在于完成双光路的耦合,保证经过分束镜后的两个光束同轴并且能够重合。光路中所使用的透镜及全反镜,除全反镜 2、3以外,其它的均是由砷化镓( GaAS材料所制 备成,这种材料制作的透镜和全反镜对 10.6 m的CQ激光具有高透过率,同时对

9、可见光区域波长可 视为全反射,所以非常适合本实验的使用。(8)(9)1、5,使全反镜1反射出的与He-Ne激He-Ne激光器发出的激光通 S1、S2,这样可以确S2加上透镜2,调节其偏转、仰俯,使回光也这个时候我们移除光路中的小孔光阑S1、【实验步骤】1. 光纤的腐蚀清洁所烧蚀出来的球腔直径是与光纤直径密切相关的,如果要获得小直径的球腔,那么必须对光纤 进行腐蚀,获得比较细小的光纤。在实验过程中,将光纤表面涂层去除,放在浓度为40%的氢氟酸中进行腐蚀,并每10分钟取出来测量光纤的直径。通过控制腐蚀时间来控制被腐蚀光纤的直径,从 而得到需要的直径大小。制备球腔的光纤末端必须用蒸馏水或酒精清冼干净

10、。2. 光纤的定位及监视系统的调整实验中要将光纤固定,以便于进行烧蚀。光路中焦点附近的光斑直径在100-500卩m之间,已经足以将光纤覆盖并完全熔融。所以只要将光纤的烧蚀部分位置标好并放置准确,就能很顺利的完 成烧蚀工作。为了找准光纤摆放的位置,选择使用针尖作为位置指示器,指示直径在10卩m以内。将一根细针固定在一根铁棒上,然后将铁棒固定在支架上,通过调节支架的高度来达到调节针尖位置的目的。此外用耐火纤维材料制成纸屏,并用支架将其固定,用来确定光斑的焦点位置。将祛除了涂层的光 纤固定在三维调整架上,并且将祛除了涂层的那端向下悬垂,以便于烧蚀。光纤的定位有以下几个步骤:(1 )将光路调节好后,将

11、固定好的纸屏放在两个透镜的中间,然后打开激光器,在纸屏上烧蚀出 一个极小的孔;(2 )然后关闭激光器。将事先装备好的针尖对准激光所烧出的小孔,固定针尖位置,移走纸屏, 然后通过调节固定光纤的三维调整架,使光纤的垂悬下端准确地对着针尖位置;(3 )将高度指示取走,完成光纤的定位。注意在移走高度指示的时候不要触动三维调整架,避免 移动光纤位置。为了方便观察光纤的烧蚀过程,更好地了解光纤熔融过程中所发生的变化,了解影响球的大小 具体和那些因素相联系,便于观察所烧蚀的球是否符合实验的要求。将显微镜固定在三维架上,通 过调节镜筒的位置便可以清晰地观察到球的烧蚀过程。打开He-Ne激光器,照明光纤底端,调

12、节固定镜筒的三维架,直到图像清晰为止。3. 石英光学微型谐振腔的烧制先打开CQ激光器电源,预热15分钟,然后将激光器的电压调升至 190V,通过使用脚踏开关来 控制激光的通断。一般情况下,调整激光输出电压在190V左右,以单触发的方式输出激光,时间不能太长,避免为高度过高而将光纤气化,一般在0.5秒左右。每次触发脚踏开关的时候,注意不能直接用眼睛观察镜筒,因为光纤在烧蚀时会发出强烈的白 光,容易伤到眼睛,为减少对眼睛的伤害,可戴上墨镜,或者是在烧蚀的过程视线远离发光点。触 发结束,熔融石英收缩成球腔,光纤满足一下两个条件:第一,光纤的底端全部被光斑所覆盖 二,烧蚀过程中,光纤两边所受的光压是平

13、衡的。当满足上述的两个条件,就可以将光纤熔融成具 有比较完美的圆对称得球腔;,由于表面张力和液化后的光纤部分受 Y最大为4.3左右。为了得到比较完美的球腔,令球直径与光纤直径的比为屮 到的重力需要平衡,所以屮不可能无限的大,在我们的实验中, 光纤的烧蚀成球过程如图 3所示,图3.激光烧蚀光纤原理图3.就让光纤达到最佳的位置,此时我们可以通过调节三维角实验时,很难在第一次烧蚀的时候,架,来移动光纤下端的位置,并结合所烧蚀出来球腔的形状来判断光纤两边的光压是否平衡。如果 烧蚀出来的球腔向某个方向偏转,这是由于球腔两边的光压不平衡所造成的,这时需要调节固定光 纤的三维调整架来达到两边光压平衡。当烧蚀的球已经变成比较完美的圆对称球腔后,可以通过控 制上下调节光纤的位置来控制光纤进入光斑部分的长度,从而达到控制球腔半径的目的。【实验内容】1.2.实验时,激光器的功率不能调得过大,太大的功率容易将光纤汽化。同时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论