2019年最新-Fourierseries,transform,andFFT傅立叶级数,变换,FFT-精选文档_第1页
2019年最新-Fourierseries,transform,andFFT傅立叶级数,变换,FFT-精选文档_第2页
2019年最新-Fourierseries,transform,andFFT傅立叶级数,变换,FFT-精选文档_第3页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Analog and Digital Filter DesignFourier series, transform, and FFTMiroslav Lutovac and Dejan losicOverview Fourier series Fourier transform FFT Examples MATLAB fft MATLAB freqzFourier seriesPeriodic signals Nonsinusoidal periodic signals play an important part in signal processing Theory of nonsinus

2、oidal periodic signals is based upon resolving them into sinusoidal components According to the principle of superposition, we can find the steady-state response of an LTI system to an arbitrary periodic in put by applying the phasor method to harmonic comp on entsSecti on ally continu ous signal Co

3、nsider a real signal x(r) of real variable t that satisfies the following conditions: x(t+T) = x(r); that is, the signal is periodic having a period T x(t) is defined in the interval t<?<t + T x(r) and dx(r)/dr are sectionally continuous iriT<r<T + TDefinition of Fourier series+OGx(r) =

4、C()+(A/? cos(3/j + Bn sin(nir)/?=it + Tx(t) cos(ei/j dr2 Ct+t2ttThe process of resolving a signal into its Fourier series is called spectral analysis or harmonic analysisBn = J x(r)sin(Hir)drComplex Form of Fourier Series+ 00/?=-oo1 f r+r Cn = fT*IInParseval's Identityi pi+Ti +°°+°

5、;° /= & + 辽 + 晞=£ IQ|2&/Z= 1H = OC'lim Afl = 0moclim Bn = 0mooIf the signal x(t) represents an electric current or voltage across a resistor,the expression is proportional to the resistor average power over a periodHarmonics of periodic signals+OGx(t)=工兀叫)=X(°)/?=()+0G+ T

6、X絆 cos(gf + $(,/)n=ide componentx(o)(r) = X(°)= C()Gibbs phenomenonWhen a sudden change of amplitude occurs in a signal and the attempt is made to represent it by a finite number of terms in a Fourier series, the overshoot at the corners (at the points of abrupt change) is always found. As the

7、number of terms is increased, the overshoot is still found; this is called the Gibbs phenomenon.x(/)Amplitude, phase, power spectrumy (2),A inA graphical representation of a periodic signal x(t) produced by drawing a series of vertical lines at intervals on a horizontal axis, where the intervals rep

8、resent an increase of namplitude spectrum花(°), g,£,,凶),phase spectrumExample spectrumFourier tra nsformDefinitionFourier transformf +OGxg = J(x(r) = / x(r)e->fdrJ00Inverse Fourier transform1 C +°°M)=厂 1( X(x>)= / x c/WeZ 兀 J 0GThe variable co is called a continuous frequenc

9、y variablelim /|x(f)| df < OO sufficient existenee conditionTfgJ_TSpectrum of xPlots of |X(jco)| and arg(X(jco) versus co are called the amplitude spectrum and phase spectrum of x(t), respectivelyEn 言 ds 善tEe Egads as£dPropertiesUniquen essX(/j = X2(0 O Xi(/e) = X2(je)于(Kg) =Homogeneity于 t(K

10、 Xg) = K:L(X(j4)7M) + x2(t)= 7M) + JCv2(r)AdditivityJ_1( Xi()e) + X 2(丿 e) = J_1( Xi(je) + 厂1( 乂2(丿讪DifferentiationD心爭drJ(Dx(r) = ;J(x(r) = jcoX (jco)(j® X(j®) = D_1(= Dx (t)Parseval's theorem and energyspectral densityms =云Frequency response ofcontinuous-time systemsniny(0Dm = dei =0k

11、=0Relaxed LTI system described by linear constant-coefficients differential equationHO)Frequency responseDiscrete Fourier transform(FT)and FFTDefinitionx()n=兀(),兀(1),兀(2), ,兀(刃), ,兀(N1)Finite-lengthsequenceN1Xg =工 厂"/?=()X伙)“ = X(), X(i), 乂,X(灯,X(“_i)In verse discrete Fourier transform(idft)N_1

12、%)=亓工闷斤=()Discrete Fouriertransform pairx()w 宀乂伙)®Q%)n = X(r)nQ1X)n = U(/?)/v< o 6>©66 6ro£0to9090zo(XIW!=9 乙039101eeeeeooParsevas identityN 1 N-lE l)|2 =万刀险|2/?=() £=()Frequency response ofdiscrete-time systemsMLQURelaxed LTI system described by linear constant-coefficient

13、s difference equationThe system transforms the input sequence by multiplying each member of the input DFT with the factor Hk)/?=()/=()Digital frequencyeInNormalized frequency(MATLAB)Frequency responseMATLAB freqz0.1freqz(叫町 b2 l>3, a。0 屯】)0.20.30.40.50.60.70.80.91Normalized Frequency (xn rad/sample)A o o o o o o o o 1 2 3 4 5 6 ffip) apn-E6es0.10.20.30.40.50.60.70.80.91Normalized Frequency (xn rad/sample)o2L(saaB8p) aseqdFurther readi ngM. D. Lutovac, D. V. Tosic, B. L. Eva nsHLTER DESIGN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论