版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.3 1.3 空间几何体的表面积和体积空间几何体的表面积和体积 在初中已经学过了正方体和长方体的表面积,你在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?知道正方体和长方体的展开图与其表面积的关系吗?几何体表面积几何体表面积展开图展开图平面图形面积平面图形面积空间问题空间问题平面问题平面问题 正方体、长方体是由多个平面围成的几何体,它正方体、长方体是由多个平面围成的几何体,它们的表面积就是各个面的面积的和们的表面积就是各个面的面积的和 因此,我们可以把它们展成平面图形,利用平面因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面
2、积图形求面积的方法,求立体图形的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的几何棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?体,它们的展开图是什么?如何计算它们的表面积? 棱柱的侧面展开图是什么?如何计算它的表棱柱的侧面展开图是什么?如何计算它的表面积?面积?h正棱柱的侧面展开图正棱柱的侧面展开图 棱锥的侧面展开图是什么?如何计算它的表棱锥的侧面展开图是什么?如何计算它的表面积?面积?侧面展开正棱锥的侧面展开图正棱锥的侧面展开图 棱台的侧面展开图是什么?如何计算它的表棱台的侧面展开图是什么?如何计算它的表面积?面积?侧面展开hh正棱台的侧面展开
3、图正棱台的侧面展开图 棱柱、棱锥、棱台都是由多个平面图形围成的几何棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的体,它们的侧面展开图还是平面图形,计算它们的表面表面积就是计算它的各个侧面面积和底面面积之和积就是计算它的各个侧面面积和底面面积之和hOOr)(2222lrrrlrS圆柱表面积lr2圆柱的侧面展开图是矩形圆柱的侧面展开图是矩形圆锥的侧面展开图是扇形圆锥的侧面展开图是扇形)(2lrrrlrS圆锥表面积r2lOr)(22rllrrrS圆台表面积r2lOrO r2 r圆台的侧面展开图是扇环圆台的侧面展开图是扇环lOrO rlOrlOOr)(2lrr
4、S柱)(lrrS锥)(22rllrrrS台 圆柱、圆锥、圆台三者的表面积公式之间有什么关圆柱、圆锥、圆台三者的表面积公式之间有什么关系?系?rr上底扩大上底扩大r0上底缩小上底缩小 以前学过特殊的棱柱以前学过特殊的棱柱正方体、长方体以及圆柱正方体、长方体以及圆柱的体积公式的体积公式, ,它们的体积公式可以统一为:它们的体积公式可以统一为:ShV (S为底面面积,为底面面积,h为高)为高)一般棱柱体积也是:一般棱柱体积也是:ShV 其中其中S为底面面积,为底面面积,h为棱柱的高为棱柱的高探究棱锥与同底等高的棱柱体积之间的关系探究棱锥与同底等高的棱柱体积之间的关系三棱锥与同底等高的三棱柱的关系三棱
5、锥与同底等高的三棱柱的关系ShV31(其中(其中S为底面面积,为底面面积,h为高)为高) 由此可知,棱柱与圆柱的体积公式类似,都是底由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于面面积乘高;棱锥与圆锥的体积公式类似,都是等于底面面积乘高的底面面积乘高的 31 经过探究得知,棱锥也是同底等高的棱柱体积经过探究得知,棱锥也是同底等高的棱柱体积的的 即棱锥的体积:即棱锥的体积:31 由于圆台由于圆台( (棱台棱台) )是由圆锥是由圆锥( (棱棱锥锥) )截成的,因此可以利用两个锥截成的,因此可以利用两个锥体的体积差得到圆台体的体积差得到圆台( (棱台棱台)
6、)的的体积公式体积公式( (过程略过程略) )根据台体的特征,如何求台体的体积?根据台体的特征,如何求台体的体积?ABABCDCDPSShDCBAPABCDPVVVhSSSS)(31棱台(圆台)的体积公式棱台(圆台)的体积公式hSSSSV)(31 其中其中 , 分别为上、下底面面积,分别为上、下底面面积,h为圆台为圆台(棱台)的高(棱台)的高SS柱体、锥体、台体的体积公式之间有什么关系?柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,为底面面积,h为柱体高为柱体高ShV SS S分别为上、下分别为上、下底面底面面积,面积,h 为台体高为台体高ShV310SS为底面面
7、积,为底面面积,h为锥体高为锥体高上底扩大上底扩大上底缩小上底缩小18例例1 1 已知长方体铜块的长、宽、高分别为已知长方体铜块的长、宽、高分别为8 8、4 4、 2 2,将它溶化后铸成一个正方体(不计耗损),将它溶化后铸成一个正方体(不计耗损),求铸成铜块的表面积和体积。求铸成铜块的表面积和体积。19例例2 2(1 1)已知棱长为)已知棱长为a a,各面均是等边三角形的四面体,各面均是等边三角形的四面体S-ABCS-ABC,求它的体积和表面积;,求它的体积和表面积;(2 2)已知圆锥的高为)已知圆锥的高为2 2,其侧面展开图是一个弧长,其侧面展开图是一个弧长为为66的扇形,求圆锥的表面积和体
8、积;的扇形,求圆锥的表面积和体积;(3 3)将圆心角为)将圆心角为120120,面积为,面积为33的的扇形作为的的扇形作为圆锥的侧面,求此圆锥的表面积和体积。圆锥的侧面,求此圆锥的表面积和体积。20例例3 3 (1 1)一个四棱台,其上下底面均为正方形,边长)一个四棱台,其上下底面均为正方形,边长分别为分别为8 8和和1818,侧棱长为,侧棱长为1313,求其表面积;,求其表面积;(2 2)已知直角梯形的上、下底,高分别为)已知直角梯形的上、下底,高分别为2,42,4, ,将直角梯形绕垂直于底边的腰所在直线旋转一周形成圆台,将直角梯形绕垂直于底边的腰所在直线旋转一周形成圆台,求这个圆台的体积和
9、表面积。求这个圆台的体积和表面积。5D DC CB BA A21例例4 4 如图,在如图,在ABCABC中,中,AC=3AC=3,BC=4BC=4,AB=5AB=5,以,以ABAB所在直线为轴,三角形面旋转一周形成一旋转体,所在直线为轴,三角形面旋转一周形成一旋转体,求此旋转体的表面积和体积。求此旋转体的表面积和体积。C CB BA A22例例5 5 一空间几何体的三视图如图所示,求该几何一空间几何体的三视图如图所示,求该几何体的体积。体的体积。2 22 22 2正视图正视图2 22 22 2侧视图侧视图俯视图俯视图 例例6 有一堆规格相同的铁制(铁的密度是有一堆规格相同的铁制(铁的密度是 )
10、六角螺帽共重)六角螺帽共重5.8kg,已知底面是正六边,已知底面是正六边形,边长为形,边长为12mm,内孔直径为,内孔直径为10mm,高为,高为10mm,问这堆螺帽大约有多少个(问这堆螺帽大约有多少个( 取取3.14)?)?3/8 . 7cmg 解:六角螺帽的体积是六棱柱解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即的体积与圆柱体积之差,即: :10)210(14. 3106124322V)(29563mm)(956. 23cm所以螺帽的个数为所以螺帽的个数为252)956. 28 . 7(10008 . 5(个)(个)答:这堆螺帽大约有答:这堆螺帽大约有252252个个柱体、锥体、台体的
11、表面积柱体、锥体、台体的表面积各面面积之和各面面积之和rr0 r展开图展开图)(22rllrrrS 圆台圆台圆柱圆柱)(2lrrS)(lrrS圆锥圆锥柱体、锥体、台体的体积柱体、锥体、台体的体积ShV31锥体锥体hSSSSV)(31台体台体柱体柱体ShV SS 0S261.3.2 1.3.2 球的体积和表面积球的体积和表面积271.球的表面积球的表面积 球面面积(也就是球的球面面积(也就是球的表面积表面积)等于它)等于它的的大圆面积的大圆面积的4倍倍,即,即其中其中R R为球的半径为球的半径. .24SR球28343VR球2 2、球的体积、球的体积,其中,其中R R为球的半径为球的半径. .2
12、9练习:练习:1 1三个球的半径之比为三个球的半径之比为 那么最大的球的体那么最大的球的体积是其余两个球的体积和的积是其余两个球的体积和的 倍;倍; 1:2:32.2.若球的大圆面积扩大为原来的若球的大圆面积扩大为原来的4 4倍,则球的体积倍,则球的体积比原来增加比原来增加 倍;倍;3.3.把半径分别为把半径分别为3 3,4 4,5 5的三个铁球,熔成一个大的三个铁球,熔成一个大球,则大球半径是球,则大球半径是 ;4.4.正方体全面积是正方体全面积是24,24,它的外接球的体积是它的外接球的体积是 ,内,内切球的体积是切球的体积是 . .305.5.球球OO1 1、OO2 2、分别与正方体的各面、各条棱相切,、分别与正方体的各面、各条棱相切,正方体的各顶点都在球正方体的各顶点都在球OO3 3的表面上,求三个球的的表面上,求三个球的表面积之比表面积之比提示:球的表面积之比事实上就是半径之比的平方,故提示:球的表面积之比事实上就是半径之比的平方,故只需找到球半径之间的关系即可只需找到球半径之间的关系即可31例例1. 1.如图如图, ,圆柱的底面直径与高都等于球的直径圆柱的底面直径与高都等于球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子商务支付安全与风险管理(标准版)
- 烟草专卖管理制度与实施指南
- 供应商选择与评估管理制度制度
- 公共交通车辆维修质量管理制度
- 义翘讲堂《Tau的结构・修饰・致病:从基础功能到神经退行性疾病的诊断与治疗突破》
- 2026年顺德区环城小学招聘语文临聘教师备考题库参考答案详解
- 2026年江苏省东海县部分事业单位赴高校公开招聘高层次人才8人备考题库及完整答案详解一套
- 养老院日常照护制度
- 2026年西昌市房地产事务中心招聘2名工作人员备考题库及参考答案详解一套
- 天津市滨海新区2026年事业单位公开招聘工作人员备考题库及参考答案详解一套
- 太原贵邦盛基建材有限责任公司新型绿色建筑材料加工项目环评可研资料环境影响
- CJ/T 111-2018 卡套式铜制管接头
- HG/T 3809-2023 工业溴化钠 (正式版)
- 220kv输变电工程项目实施方案
- 中国近代学前教育
- 海上风电机组基础结构-第三章课件
- 家庭教育讲师培训方法研究
- 《英语面试指南》招聘求职必备手册
- DB12-T 601-2022 城市轨道交通运营服务规范
- 砼浇筑工程技术交底
- 重庆园林工程师园林理论
评论
0/150
提交评论