数论之余数问题8_第1页
数论之余数问题8_第2页
数论之余数问题8_第3页
数论之余数问题8_第4页
数论之余数问题8_第5页
免费预览已结束,剩余42页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十讲:数论之余数问题余数问题是数论知识板块中另一个内容丰富, 题目难度较大的知识体系,也 是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重 要。许多孩子都接触过余数的有关问题, 并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义, 三大余数定理(加法余数定理,乘法 余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(bM0),若有a* b=qr,也就是a= bx q+ r,0< rv b;我们称上面的除法算式为一个带余除法算式。这里: 当r =0时:我们称a可以

2、被b整除,q称为a除以b的商或完全商当r H0时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型可以理解为被除数,现在要求按照 b本一捆打如图,这是一堆书,共有a本,这个a就包,那么b就是除数的角色,经过打包后共打 包了 c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。这个图能够让学生清晰的明白带余除法算式中 4个量的关系。并且可以看出余数一定要比除数小。、三大余数定理:1. 余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以 c的余数。例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两

3、个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。例如:23, 19除以5的余数分别是3和4,故23+19=42除以5的余数等于 3+4=7除以5的余数,即2.2. 余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23, 16除以5的余数分别是3和1,所以23X16除以5的余数等于 3X 1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23, 19除以5的余数分别是3和4,所以23X 19除以5的余数等于3X4除以5的余数,即2.3. 同余定理若两个整数a、b被自然数m除有相同的余数

4、,那么称a、b对于模m同余,用式子表示为: a= b ( mod m ),同余式读作:a同余于b,模m由同余的性质,我们可以得到一个非常重左边的式子叫做同余式。要的推论:若两个数a, b除以同一个数m得到的余数相同,则a, b的差一定能被m整除用式子表示为:如果有a= b ( mod m ),那么一定有a b= mk,k是整数,即 m|(a b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术, 他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢 失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式 1234 +1898

5、+18922 +678967 +178902 =8899231234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以 9的余数就可以了,在算的时候往往就是一个9一个9的找并

6、且划去,所以这种方法被称作“弃九法”。所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式迷问题。四、中国剩余定理:1.中国古代

7、趣题:中国数学名著孙子算经里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人。刘邦茫然而不知其数。我们先考虑下列的问题:假设兵不满一万,每 5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945 (注:因为5、9、13、17Chin ese如果加上限制条件“满足上面条件最

8、小的三位自然数”为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948 (人)。孙子算经的作者及确实著作年代均不可考, 不过根据考证,著作年代不会在 晋朝之后,以这个考证来说上面这种问题的解法, 中国人发现得比西方早,所以 这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Remai nder Theorem)在近代抽象代数学中占有一席非常重要的地位。2.核心思想和方法:对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,F面我们就以孙子算经中的问题为例,分析此方法今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二, 问物几何?题目中我们可以

9、知道,一个自然数分别除以3, 5, 7后,得到三个余数分别为2, 3, 2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由5x7 =35,即5和7的最小公倍数出发,先看35除以3余2,不符合 要求,那么就继续看5和7的“下一个”倍数35沢2 =70是否可以,很显然70 除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显 然21可以符合要求。最后再构造除以7余1,同时又是3, 5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:2X70+3%21+2X45±k3,5,7 = 233 - k3,5,7,其中 k 是从 1

10、开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限 制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”那么我们可以计算2X70 + 3X21 +2X45-2X3,5,7 =23 得至 U所求我们只要对最小的23 加上3,5,7即可,即 23+105=12&例题精讲:【模块一:带余除法的定义和性质】【例1】(第五届小学数学报竞赛决赛)用某自然数a去除1992,得到商是46, 余数是r,求a和r .【解析】因为1992是a的46倍还多r ,得到1992子46 =4314,得1992 -46 43 14,所以 a =43 ,

11、r =14 .【巩固】(清华附中小升初分班考试)甲、乙两数的和是1088 ,甲数除以乙数商11【解析】余32,求甲、乙两数.(法 1)因为 甲=乙X11+32,所以 甲+乙=乙咒11+ 32 +乙=乙X12 +32 =1088 ;则乙=(108832)+12=88,甲=1088 -乙=1000.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从 1088中减 掉32以后,1056就应当是乙数的(11 +1)倍,所以得到乙数=1056斗12=88 ,甲数=1088-88 =1000 .【巩固】一个两位数除310,余数是37,求这样的两位数。【解析】本题为余数问题的基础题型,需要学生明白一个

12、重要知识点,就是把余 数问题-即“不整除问题”转化为整除问题。方法为用被除数减去余数, 即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”也可以得到一个除数的倍数。本题中310-37=273,说明273是所求余数的倍数,而273=3X 7X13,所求的两位数约数还要满足比37大,符合条件的有39, 91.【例2】( 2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13 ,已知被除数、除数、商与余数之和为2113 ,则被除数是多少?【解析】被除数+除数+商+余数=被除数+除数+ 17+13=2113所以被除数+除数=2083,由于被除数是除数的17倍还多13,则

13、由“和倍问题”可得:除数=(2083-13)-( 17+1) =115,所以被除数=2083-115=1968.【巩固】用一个自然数去除另一个自然数,商为 40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【解析】本题为带余除法定义式的基本题型。根据题意设两个自然数分别为x,y, 可以得到21.【例3】【解析】【巩固】【解析】【例4】【解析】fx =40y +16+y+40+16=933,解方程组得,即这两个自然数分别是856,(2000年“祖冲之杯”小学数学邀请赛试题)三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三

14、个数是设所得 的商为 a, 除数为 b .(19a + b) + (23a+b)+(31a+b)= 2001,73a+3b =2001,由b 19,可求得a =27, b =10 .所以,这三个数分别是19a+b =523, 23a+b =631, 31a+b =847。(2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以 9时所得到的商是余数的3倍,这个自然数是设这个自然数除以11余a (0兰a 11),除以9余b(0<bC9),贝U有11a+a=9X3b+b,即3a =7b,只有a =7,b=3,所以这个自然数为127 =84。(1997

15、年我爱数学少年数学夏令营试题)有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人 4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人 3本, 有剩余;每人4本,书不够.问:第二组有多少人?由48斗4 =12,48弓5=9.6知,一组是10或11人.同理可知48弓3=16,48+4=12知,二组是13、14或15人,因为二组比一组多5人,所以二 组只能是15人,一组10人.【巩固】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于13X6=78 ,并且小于13x(6 +1)

16、=91 ;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78 +5 =83 .【模块二:三大余数定理的应用】【例5】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45 =56 , 59 -45 =14 , (56,14)=14 , 14 的约数有 1,2,7,14,所以这个数可能为2,7,14 0【巩固】有一个整数,除39,51,147所得的余数都是3,求这个数.

17、【解析】(法 1)393=36 , 1473 =144 , (36,144)=12 , 12 的约数是 1,2,3,4,6,12 ,因为余数为3要小于除数,这个数是4,6,12 ;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.51 -39 =12 , 147-39=108 ,(12,108)=12,所以这个数是 4,6,12 .【巩固】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少 个?(余数可以为0)【解析】我们知道18, 33的最小公倍数为18 , 33=198,所以每198个数一次.1198之间只有1, 2,

18、 3,,17, 198(余0)这18个数除以18及33所得的余数相同,而999- 198=59,所以共有5 X 18+9=99个这样的数.【巩固】(2008年仁华考题)一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以 19后所得到的商与余数的和.那么这样的三位数中最大数是多少,最小数是多少?【解析】设这个三位数为s,它除以17和19的商分别为a和b,余数分别为m和n,贝U s =17a +m =19b +n .根据题意可知 a+m = b + n,所以 s(a+m) = s- b + n),即 16a = 18b,得8a=9b .所以a是9的倍数,b是8的倍数.此时

19、,由a+m=b+n知A81n-m =a -b =a a =99由于s为三位数,最小为 100,最大为999,所以100兰17a+m兰999,而1 <m 06,所以 17a+1 <17a+m <999, 100 <17a+m <17a+16,得至U 5<a<58,而 a是9的倍数,所以a最小为9,最大为54.1当a =54时,n-ma =6,而n <18,所以m兰12,故此时s最大为917X 54+ 12= 9301当a =9时,n-m =-a =1,由于m >1,所以此时s最小为179+1=154 .9所以这样的三位数中最大的是 930,最

20、小的是154.【例6】两位自然数ab与ba除以7都余1,并且a :>b,求abxba .【解析】ab-ba能被7整除,即(10a+b) -(10b+a)=9a-b)能被7整除.所以只能有a-b =7,那么ab可能为92和81,验算可得当ab=92时,ba =29满足题目要求,abx ba =92X29 =2668【巩固】学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这 三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【解析】所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118 -67 =51 和 67-33 =34的公约数

21、,所求答案为17.【巩固】(2000年全国小学数学奥林匹克试题)在除13511, 13903及14589时能剩下相同余数的最大整数是【解析】因为 13903-13511 =392,14589 -13903 =686 ,由于13511, 13903, 14589要被同一个数除时,余数相同,那么,它们两两之差必能被同一个数整除.(392,686) =98,所以所求的最大整数是98.【例7】(2003年南京市少年数学智力冬令营试题)2 2003与20032的和除以7的余数是【解析】找规律.用7除2,22,23,24,25,26,的余数分别是2,4,1, 2,4, 1, 2, 4, 1,2的个数是3的

22、倍数时,用7除的余数为1; 2的个数是3的倍数多1时,用7除的余数为2; 2的个数是3的倍数多2时, 用7除的余数为4 .因为22003 =23迹67丰,所以22003除以7余4 .又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以20032除以7余1故22003与20032的和除以7的余数是4+1=5 .【巩固】(2004年南京市少年数学智力冬令营试题 )在1995, 1998, 2000, 2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组这样的数组共有组.【解析】1995, 1998, 2000, 2001, 2003 除以 9

23、的余数依次是 6, 0, 2, 3, 5.因为 2 + 5 =2 +5 + 0=7 , 2 + 5+3 +6 =0 +2+5 +3 + 6 =7 +9 ,所以这样的数组共有下面 4个:(200Q2003),(1998,2000,2003),(2000,2003,2001,1995) , (1998,200020032001,1995).【例8】(2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是【解析】(70 +110 +160)-50 =290 , 50子3 =16.2,除数应当是290的大于17小于70的约数,只可能是29

24、和58, 110子58 =1.52 , 52 >50,所以除数不是58.70-29=2.12 , 110-29 =3.23 , 160-29=5.15 , 12 +23 +15 =50 ,所以除数是29【巩固】(2002年全国小学数学奥林匹克试题)用自然数n去除63, 91, 129得 到的三个余数之和为25,那么n=【解析】n能整除63+91 +129 -25 =258 .因为25子3=8.1,所以n是258大于8的约数.显然,n不能大于63.符合条件的只有43.【巩固】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被 3除所得的

25、余数.那么打球盘数最多的运动员打了多少盘?【解析】本题可以体现出加法余数定理的巧用。计算 101, 126, 173, 193除以3的余数分别为2, 0, 2, 1。那么任意两名运动员的比赛盘数只需要用2,0, 2, 1两两相加除以3即可。显然126运动员打5盘是最多的。【例9】(2002年小学生数学报数学邀请赛试题)六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买成语大词典.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙 3人的钱凑在一起恰好可买 2本,丁、戊2人的钱凑在一起恰好可买1本.这种成语大词典的定价是元.【解析】六名小学生共带钱133元.

26、133除以3余1,因为甲、乙、丙、丁、戊的钱恰好能买3本,所以他们五人带的钱数是 3的倍数,另一人带的钱除 以3余1.易知,这个钱数只能是37元,所以每本成语大词典的定价是(14+17 +18 +21 +26)子 3 =32 (元).【巩固】(2000年全国小学数学奥林匹克试题)商店里有六箱货物,分别重 15,16, 18, 19, 20, 31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是千克.【解析】两个顾客买的货物重量是3的倍数.(15+16+18+19+20+31)(1+2) =119子3=39.2,剩下的一箱货物重量除以3应当

27、余2,只能是20千克.【例10】求2461咒135x6047+11的余数.【解析】因为 2461 11= 223.8, 13511 =12.3 , 6047 斗11 =549.8,根据同余定理2461X135X6047-11 的余数等于 838-11 的余数,而 8X38=192 ,192子11=17.5,所以 2461X135X6047 +11 的余数为 5.【巩固】(华罗庚金杯赛模拟试题)求478X296X351除以17的余数.【解析】先求出乘积再求余数,计算量较大.可先分别计算出各因数除以17的余数,再求余数之积除以17的余数.478,296,351除以17的余数分别为2 , 7和11

28、,(2X7X11)+17 =9【巩固】求31997的最后两位数.【解析】即考虑31997除以100的余数.由于100 =4X25,由于33 =27除以25余2,所以39除以25余8,310除以25余24,那么320除以25余1;又因为32除以4余1,则3刀除以 4余1;即320 -1能被4和25整除,而4与25互质,所以320 1能被100 整除,即320除以100余1,由于1997 =20x99+17,所以31997除以100的余数即等于317除以100的余数,而 36 =729 除以 100 余 29, 35=243 除以 100余 43 , 317 =(36)2 x 35,所以 317除

29、以100的余数等于29x29x43除以100的余数,而29x29x43 = 36163除以100余63,所以31997除以100余63,即31997的最后两位数为63.【巩固】222除以13所得余数是2000个"2"【解析】【巩固】求14389除以7的余数.【解析】法一:我们发现222222整除13, 2000-6余2,所以答案为22- 13余9。由于143三3(mod7 ) (143被7除余3),所以14389三389 (mod7 ) ( 14389被7除所得余数与389被7除所得余数相等)而 36 =729, 729 三 1 (mod7 )( 729 除以 7 的余数为

30、 1),所以 389 三36 X36、讨 |)X36'X35 三35 三5(mod7 ).14个故14389除以7的余数为5.法二:计算389被7除所得的余数可以用找规律的方法,规律如下表:31323334353637mod 73264513于是余数以6为周期变化.所以389三35三5(mod7 ).【巩固】(2007年实验中学考题)12 +22 +32 +111+20012 +2002除以7的余数是多少?【解析】由于 12 +22 + 32+山+ 20012+ 2002=4005 10012003 1,33而61001是7的倍数,所以这个乘积也是7的倍数,故12 +22 +32 +1

31、11 +20012 +20022 除以 7 的余数是 0;【巩固】30 +3031 )被13除所得的余数是多少?【解析】31被13除所得的余数为5,当n取1, 2, 3,时5n被13除所得余数分别是5, 12, 8, 1, 5, 12, 8, 1以4为周期循环出现,所以530被13除的余数与52被13除的余数相同,余12,则3130除以13的余数为12;30被13除所得的余数是4,当n取1, 2, 3,时,4n被13除所得的 余数分别是4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10,以6为周期循环出现,所以431被13除所得的余数等于41被13除所得的余数,即4, 故3

32、031除以13的余数为4;所以(3130 +3031 )被13除所得的余数是12+4-13=3 .【巩固】(2008年奥数网杯)已知a =20082008|丄|-2008,问:a除以13所得的余数是2008个2008多少?【解析】2008 除以 13余 6,10000除以 13余 3,注意到 20082008 =2008"0000+2008 ;200820082008 =20082008X10000 +2008 ;2008200820082008 =200820082008X10000 +2008 ;根据这样的递推规律求出余数的变化规律:20082008 除以 13 余 6咒3+6-

33、13=11 , 200820082008 除以 13 余11X3+6-39 =0,即 200820082008是 13 的倍数.而2008除以3余1,所以a =2008?008丄|如08除以13的余数与2008除以132008个2008的余数相同,为6.【巩固】除以41的余数是多少?199&个 7【解析】找规律: 7- 4 77+41=”36 ,777 + 41= “”39【巩固】【解析】字,7777 +41 =“28 ,77777弓41 =0 , ,所以77777是41的倍数,而19965=399川1 ,所以77尹可以分成399段77777和1个7组成,那么它除以41的余1996个

34、7数为7.11 +22 +33 +44 +111111 +20052005除以10所得的余数为多少?求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幕方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每 20个(20是4和10的最小 公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11 +22 +33 +44 +1川1) +2O20的个位数字,为 1 +4 +7 +6 +5 +6 +3 +6 +9 +0 +1 +6 +3 +6 +5 +6 +7 + 4 + 9 +0 =94 的个位数为4,由于2005个加数共可分

35、成100组另5个数,100组的个位数字和是4X100 =400 的个位数即 0,另外 5个数为 20012001、20022002、20032003、20042004、20052005 ,它们和的个位数字是1+4+7+6+5=23的个位数3 ,所以原式的个位数字是3,即除以10的余数是3.【例11】求所有的质数P,使得4p2 +1与6p2十1也是质数.【解析】如果p=5,则4p2+1=101 , 6p2+1=151都是质数,所以5符合题意.如果P不等于5,那么P除以5的余数为1、2、3或者4, p2除以5的余数即等于12、22、32或者42除以5的余数,即1、4、9或者16除以5的余数,只有1

36、和4两种情况.如果p2除以5的余数为1,那么4p2+1除以5的余数等于43+1=5除以5的余数,为0,即此时4p2+1被5整除,而4p2+1大于5,所以此时4p2+1不是质数;如果p2除以5的余数为4,同理可知6p2+1不是质数,所以P不等于5, 4p2+1与6p2+1至少有一个不是质数,所以只有p=5满足条件.【巩固】在图表的第二行中,因数的乘积除以11因数89909192939495969798因数恰好填上8998这十个数,使得每一竖列上下两个所得的余数都是3.【解析】因为两个数的乘积除以11的余数,等于两个数分别除以11的余数之 积.因此原题中的8998 可以改换为110,这样上下两数的

37、乘积除以11余3就容易计算了 .我 们得到下面的结果:答案是:因数89909192939495969798因数37195621048进而得到本题的因8999999999数9012345678因9989999999数1597340826试题)3个三位数乘积的算式abcbcax cab =234235286【巩固】(2000年“华杯赛”(其中a Ab Ac),在校对时,发现右边的积的数字顺序出现错误,但是知道最后一位6是正确的,问原式中的abc是多少?【解析】234235286 三2 +3 +4 +2 +3 +5 +2 +8 +6 三8(mod9)3abcxbcacab 三(a+b+ c) (mo

38、d9),于是(a +b + c)3 三8(mod9),从而(用 a +b +c 三0,1,2,.,8(mod9)代入上式检验)a+b+c 三2,5,8(mod9)(1),对 a 进行讨论:如果a =9,那么b+c三2,5,8(mod 9),又caxb的个位数字是6,所以bxc的个位数字为4,bxc可能为4X1、7X2、83、6咒4,其中只有(b,c) =(4,1),(8,3)符合,经检验只有983咒839咒398 =328245326 符合题意.如果a =8,那么b+c三3,6,0(mod9),又b"的个位数字为2或7,则bxc可能为 2x1、4x3、6x2、7x6、7x1,其中只有

39、(b,c)=(2,1)符合(3),经检验,abC =821不合题意.女口果a =7,那么b+c三4,7,1(mod9)(4),贝Ubxc可能为4x2、6咒3,其中没有符合的(b,c).c<4abcxbcax面 <700x600咒500 =210000000 C222334586,因此这时 赢不可能符合题意.综上所述,abc=983是本题唯一的解.【例12】一个大于1的数去除290, 235, 200时,得余数分别为a,a+2,a+5,则这个自然数是多少?【解析】根据题意可知,这个自然数去除290,233,195时,得到相同的余数(都既然余数相同,我们可以利用余数定理,可知其中任意两

40、数的差除以这个数肯定余0.那么这个自然数是290233=57的约数,又是233195 =38的约数,因此就是57和38的公约数,因为57和38的公约数只有19和1,而这个数大于1,所以这个自然数是19.【巩固】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90+164 =254后所得的余数,所以254和220除以这个自然数后所得的余 数相同,因此这个自然数是254-220 =34的约数,又大于10,这个自然 数只能是17或者是34.如果这个数是34,那么它

41、去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是 17, 那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例13】甲、乙、丙三数分别为603, 939, 393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍求A等于多少?【解析】根据题意,这三个数除以A都有余数,则可以用带余除法的形式将它们表示出来:603A=KiHIH|ri 939 子 A =心 H |川心 393-由于1=22 ,2=23,要消去余数1,2,3,我们只能先把余数处理成相同的,再两数相减.这样

42、我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:603-A=K1HH|r1 (939X2广A =2呵|山22 (393X4尸A =2&仙1|43这样余数就处理成相同的.最后两两相减消去余数,意味着能被A整除.939X2603 =1275 , 393X4 603 =969 , (1275,969 ) = 51 =3X17 .51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A等于17.【巩固】一个自然数除429、791、500所得的余数分别是a中5、2a、a,求这个自然数和a的值.【解析】将这些

43、数转化成被该自然数除后余数为2a的数:(429-52 =848,791、500咒2 =1000,这样这些数被这个自然数除所得的余数都是2a,故同余.将这三个数相减,得到848 -791 =57、1000 -848 =152 ,所求的自然数一定 是57和152的公约数,而(57,152 )=19,所以这个自然数是19的约数,显然1是不符合条件的,那么只能是19.经过验证,当这个自然数是19时, 除429、791、500所得的余数分别为11、12、6 , a =6时成立,所以这个自然数是19 , a =6.【模块三:余数综合应用】【例14】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、

44、21这串数列当中第2008个数除以3所得的余数为多少?【解析】【巩固】斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续, 所以裴波那契数列被3除的余数每8个一个周期循环出现,由于 2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所 得的余数,为0.(2009年走美初赛六年级)有一串数:1, 1, 2, 3, 5, 8,,从第 三个数起,每个数都是前两个数之和,在这串数的前2009个数

45、中,有【解析】由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1, 1, 2, 3,0, 3, 3, 1, 4, 0, 4,4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0,可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5几个是5的倍数?的倍数.由于2009子5=401川4,所以前2009个数中,有401个是5的倍 数.【例15】(圣彼得堡数学奥林匹克试题)托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是 15.试求该数除以18的余数.【解析】除以3、6

46、和9的余数分别不超过2, 5, 8,所以这三个余数的和永远不超过 2+5 + 8=15, 既然它们的和等于15,所以这三个余数分别就是 2, 5, &所以该数加1后能被3, 6, 9整除,而3,6,9 =18,设该数为a,则a=18m_1,即a=18(m_1)+17 ( m为非零自然数),所以它除以18的余数只能为17.【巩固】(2005年香港圣公会小学数学奥林匹克试题)一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁 ?【解析】从任意三人岁数之和是3的倍数,100除以3余1,就知四个岁数

47、都是3k+1型的数,又是质数.只有7, 13, 19, 31, 37, 43,就容易看出:父 岁,母37岁,兄13岁,妹7岁.43【例16】(华杯赛试题)如图,在一个圆圈上有几十个孔(不到100 个),小明像玩跳棋那样,从A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔他先试着每隔2孔跳一步,结果只能跳 到B孔.他又试着每隔4孔跳一步,也只能跳到 B孔.最后他每隔孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔吗【解析】设想圆圈上的孔已按下面方式编了号:A孔编号为1,然后沿逆时针方向顺次编号为2, 3, 4,,B孔的编号就是圆圈上的孔数.我们先看每隔2孔跳一步时,小明跳在

48、哪些孔上?很容易看出应在1, 4,7, 10,上,也就是说,小明跳到的孔上的编号是3的倍数加1 按题意,小明最后跳到B孔,因此总孔数是3的倍数加1.同样道理,每隔4孔跳一步最后跳到B孔,就意味着总孔数是5的倍数 加1;而每隔6孔跳一步最后跳回到A孔,就意味着总孔数是7的倍数.如果将孔数减1,那么得数既是3的倍数也是5的倍数,因而是15的倍数.这个15的倍数加上1就等于孔数,设孔数为a ,则a=15m州(m为非零自然数)而且a能被7整除.注意15被7除余1,所以15X6被7除余6, 15的6倍加1正好被7整除我们还可以看出,15的其他(小于的7)倍数加1都不能被7整除,而15X7=105已经大于

49、100. 7以上的倍数都不必考虑,因此,总孔数只能是15X6+1=91.【解析】【巩固】【解析】通过逐次计算,可以求出3n被11除的余数,【巩固】( 1997年全国小学数学奥林匹克试题 )将12345678910111213依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是【解析】本题第一步是要求出第1997个数字是什么,再对数字求和.19共有9个数字,1099共有90个两位数,共有数字:90x2 =180 (个),100999共900个三位数,共有数字:900x3 =2700 (个),所以数连续写, 不会写到 999,从100开始是3位数,每三个数字表示一个数,(1997

50、 9 -180)子3 =6022 ,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位 数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以 排列起来的9个自然数也能被 9整除,702个数能分成的组数是:702子9 = 78 (组),依次排列后,它仍然能被 9整除,但702中2未写出 来,所以余数为9-2=7 .【例17】设2n+1是质数,证明:12 , 22 ,,n2被2n+1除所得的余数各不相同.假设有两个数a、b , (1兰b<a<n),它们的平方a2 , b2被2n+1除余数相同.那么,由 同余定理得

51、a -b =0(mod(2 n+1),即(a - b)(a+ b)三 0( mod( r2 1)由于 2n+1 是质数,所以 a+b 三0(mod(2 n+1)或 a-b 三0(mod(2 n+1),由于 a+b, a-b均小于2n+1且大于 0,可知,a+b与2n+1互质,a-b也与2n+1互质,即a+b , a-b都不能被2n+1整除,产生矛盾,所以假设不成立,原题得证.试求不大于100,且使3n+7n+4能被11整除的所有自然数n的和.依次为:31为3,32为9,33为5, 34为4,35为1,因而3n被11除的余数5个构成一个周期:3, 9, 5, 4,1, 3, 9, 5, 4,1,;类似地,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论