



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用标准文案线性代数模拟题( 一 )一单选题 .1. 下列( A )是 4 级偶排列(A) 4321 ;(B) 4123; (C) 1324;(D) 23412. 如果a11a12a134a112a113a12a13D a21a22a231, D14a212a213a22a23,a31a32a334a312a313a32a33那么 D1( D)(A)8;(B)12 ;(C)24;(D)24 3.设 A 与 B 均为 n n 矩阵,满足ABO ,则必有( C)(A)A O或BO ;(B)A BO ;(C) A0 或 B0 ;(D)A B 04.设 A 为 n 阶方阵 ( n3) ,而 A*是 A
2、 的伴随矩阵, 又 k 为常数,且 k0,1,则必有 kA *等于( B )( A) kA* ;( B) k n 1 A* ;(C) k n A* ;( D) k 1 A* 5. 向量组1 ,2 ,., s 线性相关的充要条件是(C )(A)1 , 2 ,.,s 中有一零向量(B)1 ,2 ,.,s 中任意两个向量的分量成比例( C)1 ,2 ,.,s 中有一个向量是其余向量的线性组合(D)1 ,2 ,.,s 中任意一个向量都是其余向量的线性组合6.已知1 ,2 是非齐次方程组Axb 的两个不同解,1,2 是 Ax0 的基础解系, k1 ,k 2为任意常数,则Axb 的通解为(B )(A) k
3、11k2 (12 )12; (B)k11k2 (12 )1222(C) k1 1 k 2 ( 12 )12;(D)k1 1k2 ( 12 )12227. 2 是 A 的特征值,则( A2/3 ) 1 的一个特征值是( B)(a)4/3(b)3/4(c)1/2(d)1/48.若四阶矩阵A 与 B 相似,矩阵A 的特征值为1/2,1/3,1/4,1/5,则行列式 |B -1 -I|=(B)精彩文档实用标准文案(a)0 (b)24(c)60(d)1209.若A是( A),则 A必有 AA ( A)对角矩阵;(B) 三角矩阵; (C)可逆矩阵; (D)正交矩阵10.若 A 为可逆矩阵,下列(A)恒正确
4、( )2A2A;(B)2A12A1A;(C)(A 1)1( A )1; (D)(A)1(A1)1二计算题或证明题1. 设矩阵322Ak1k423(1) 当 k 为何值时,存在可逆矩阵P,使得 P 1AP 为对角矩阵?(2) 求出 P 及相应的对角矩阵。参考答案:2. 设 n 阶可逆矩阵 A 的一个特征值为, A* 是 A 的伴随矩阵,设 |A|=d ,证明: d/ 是 A* 的一个特征值。精彩文档实用标准文案3. 当 a 取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解ax1x2x31x1ax 2x3ax1x2ax3a 2参考答案:. 当 a1, 2 时有唯一解:x1a1 ,
5、 x21, x3(a1)2a2a2a2x11k1 k2当 a1 时,有无穷多解:x2k1x3k2当 a2 时,无解。4. 求向量组的秩及一个极大无关组,并把其余向量用极大无关组线性表示1参考答案:10321130, 41, 51,2,3752214214605.若 A 是对称矩阵,B 是反对称矩阵,试证:ABBA 是对称矩阵参考答案:精彩文档实用标准文案线性代数模拟题(二)一单选题 .1.若 (1) N (1k 4l 5)a11ak2 a43al 4 a55 是五阶行列式aij 的一项,则 k 、 l 的值及该项符号为( A)( A) k2 , l3,符号为负;(B)k2 , l3符号为正;(
6、C)k3, l2,符号为负;(D)k1, l2 ,符号为正2.下列行列式(A )的值必为零( A)n 阶行列式中,零元素个数多于n2n 个;(B) n 阶行列式中,零元素个数小于 n2 n 个;(C) n 阶行列式中,零元素个数多于 n个;(D) n 阶行列式中,零元素的个数小于 n 个3. 设 A , B 均为 n 阶方阵,若 A BAB A2B 2 ,则必有(D )(A)A I; (B) B O; (C)AB ; (D) AB BA4. 设 A 与 B 均为 n n矩阵,则必有( C )(A)A BA B ;( B)ABBA ;(C) ABBA ;( D)1A 1B 1 A B5. 如果向
7、量可由向量组1 , 2 ,., s 线性表出,则(D/A )(A)存在一组不全为零的数k1 , k2 ,.,ks ,使等式k1 1k22 .k s s 成立(B)存在一组全为零的数k1, k2 ,.,ks ,使等式k11k2 2. k ss 成立(C) 对 的线性表示式不唯一( D) 向量组,1 , 2 ,., s 线性相关6. 齐次线性方程组 Ax 0 有非零解的充要条件是( C )(A) 系数矩阵 A 的任意两个列向量线性相关(B) 系数矩阵 A 的任意两个列向量线性无关( C ) 必有一列向量是其余向量的线性组合(D) 任一列向量都是其余向量的线性组合7.设 n 阶矩阵 A 的一个特征值
8、为,则( A 1) 2 I 必有特征值( B)(a) 2+1(b) 2-1 (c)2(d)-2321a ( A )8.已知A00a 与对角矩阵相似,则000(a)0 ;(b) 1 ; (c) 1;(d) 29.设A,B,C均为n 阶方阵,下面(D )不是运算律精彩文档实用标准文案(A)A B C (C B)A ; (B)(A B)CAC BC;( C) ( AB)CA(BC ) ;(D) (AB)C (AC)B 10. 下列矩阵( B )不是初等矩阵001100100100(A) 010;(B)000;(C) 020;( D)012 100010001001二计算题或证明题1. 已知矩阵 A,
9、求 A10。其中 A1012参考答案:2. 设 A 为可逆矩阵,是它的一个特征值,证明:-1-1的一个特征值。0 且是 A参考答案:3. 当 a 取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解ax1x2x3a 3x1ax2x32x1x2ax32参考答案:当 a1, 2时有唯一解:x1a1 , x23 , x33a2a 2a 2x12k1k2当 a1时,有无穷多解:x2k1x3k2当 a2时,无解。4. 求向量组的秩及一个极大无关组,并把其余向量用极大无关组线性表示1参考答案:11112110,2,3,431204112精彩文档实用标准文案极大无关组为:a2 , a3 , a
10、4 ,且 a1a2a3a45. 若 A 是对称矩阵, T 是正交矩阵,证明 T 1 AT 是对称矩阵参考答案:精彩文档实用标准文案线性代数模拟题(三)一单选题 .1.设五阶行列式aijm,依下列次序对aij进行变换后,其结果是(C )交换第一行与第五行,再转置,用2 乘所有的元素,再用-3乘以第二列加于第三列,最后用 4 除第二行各元素(A) 8m ; (B)3m ; (C) 8m ; (D)1 m 43xkyz02.如果方程组4yz0 有非零解,则( D)kx5 yz0( A) k0或 k1 ;( B) k1 或 k2 ;( C) k1或 k1;( D) k1或k3 3.设 A,B,C,I
11、为同阶矩阵,若ABCI ,则下列各式中总是成立的有(A)( A) BCAI; (B)ACBI; (C)BACI; (D)CBAI 4.设 A,B ,C为同阶矩阵,且A 可逆,下式(A)必成立( A)若 ABAC,则 BC ;(B)若 ABCB,则 AC ;(C) 若 ACBC,则AB ;(D)若 BCO,则 BO 5.若向量组 1 ,2 ,.,s 的秩为 r,则( D)(A)必定 r<s(B) 向量组中任意小于 r 个向量的部分组线性无关(C ) 向量组中任意r 个向量线性无关( D) 向量组中任意个r1 向量必定线性相关6.设向量组1 ,2 ,3 线性无关,则下列向量组线性相关的是(C
12、)(A)12 , 23 ,31 ;(B)1 , 12 ,321 ;(C)12 ,23 ,31; (D)12 ,223 ,331 .7. 设 A、 B 为 n 阶矩阵,且 A 与 B 相似, I 为 n 阶单位矩阵,则( D)(a) I-A I-B (b)A与 B有相同的特征值和特征向量(c)A与 B 都相似于一个对角矩阵(d)kI-A与 kI-B相似( k 是常数)8. 当( C)时, A 为正交矩阵,其中abAc0(a)a=1,b=2,c=3; (b) a=b=c=1; (c) a=1,b=0,c=-1; (d)a=b=1,c=0 .9. 已知向量组1 ,2 ,3 ,4 线性无关,则向量组(
13、A )(A) 12,23 ,34 , 41 线性无关 ;精彩文档实用标准文案(B)12 ,23 ,34 ,41 线性无关 ;(C)12 ,23 ,34 ,41 线性无关 ;(D)12 ,23 ,34 ,41 线性无关 .10. 当A( B)时,有a1a2a3a13c1 a23c2a33c3A b1b2b3b1b2b3c1c2c3c1c2c3100103003100( A)010;(B) 010;(C)01 0;(D) 0 10 301001101031二计算题或证明题1.设 A B, 试证明(1)Amm11 B (m 为正整数 ) ( 2)如 A 可逆,则 B 也可逆,且A B参考答案:2. 如 n 阶矩阵 A 满足 A2=A,证明: A 的特征值只能为0或-1。参考答案:3.当 a 、 b 取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解x12x22x32x41x2x3x41x1x2x33
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健身俱乐部入股协议书
- 食堂费用补贴协议书
- 高压配电施工协议书
- 集体资金使用协议书
- 长春专利保护协议书
- 面试审查就业协议书
- 资金拨付告知协议书
- 集中斗殴和解协议书
- 跟兄弟分钱写协议书
- 餐厅消防责任协议书
- 2025年消防知识考试题库:火灾预防与逃生逃生技巧实战演练题
- 高速公路占道施工应急安全措施
- 6.3种群基因组成的变化与物种的形成课件-2高一下学期生物人教版必修2
- 成人创伤性颅脑损伤院前与急诊诊治中国专家共识2025解读
- 北京开放大学2025年《企业统计》形考作业4答案
- 广东2025年中考模拟数学试卷试题及答案详解
- GB/Z 27001-2025合格评定通用要素原则与要求
- 中国蚕丝绸文化智慧树知到期末考试答案章节答案2024年浙江大学
- MOOC 学术英语写作-东南大学 中国大学慕课答案
- 市政道路中线测量内容及计算方法
- 南瓜种植PPT演示课件(PPT 46页)
评论
0/150
提交评论