高二数学 圆锥曲线(文科月考复习)_第1页
高二数学 圆锥曲线(文科月考复习)_第2页
高二数学 圆锥曲线(文科月考复习)_第3页
高二数学 圆锥曲线(文科月考复习)_第4页
高二数学 圆锥曲线(文科月考复习)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆锥曲线(月考复习)一、椭圆项目内容定义图形标准方程统一形式几 何 性 质范围顶点与长短轴的长焦点焦距离心率焦点三角形椭圆上一点与椭圆的两个焦点组成的三角形,其周长为,解题中常用余弦定理和勾股定理来进行相关的计算焦点弦三角形椭圆的一焦点与过另一焦点的弦组成的三角形,其周长为。1. 求适合下列条件的椭圆的标准方程(1)两个焦点的坐标分别是(4,0),(4,0),椭圆上一点P到两焦点距离之和等于10 ; (2)两个焦点的坐标分别是(0,2)、(0,2),并且椭圆经过点 ; (3)长轴长是短轴长的3倍,并且椭圆经过点A(-3,) (4)离心率为,且经过点(2,0)的椭圆的标准方程是 (5)离心率为,

2、一条准线方程为,中心在原点的椭圆方程是 (6)设,的周长为36,则的顶点的轨迹方程是 (7)椭圆方程为,则焦点坐标为 ,顶点坐标为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 (8)已知椭圆短轴上的两个三等份点与两个焦点构成一个正方形,则椭圆的离心率为 (9已知方程表示焦点在轴上的椭圆,则的取值范围是_,若该方程表示双曲线,则的取值范围是_(10)若椭圆的离心率为,则为 二、双曲线项目内容定义图形标准方程统一形式几 何 性 质范围顶点与实虚轴的长焦点焦距渐近线方程离心率对称性焦点三角形双曲线上一点与双曲线的两个焦点组成的三角形,解题中常用余弦定理和勾股定理来进行相关的计算焦点弦三角形双曲

3、线的一焦点与过另一焦点的弦组成的三角形。(1) 中心在原点,一个顶点是(0,6),且离心率是1.5,则标准方程是 (2) 与双曲线x22y22有公共渐近线,且过点M(2,2)的标准方程为 (3) 以椭圆的焦点为顶点,且以椭圆的顶点为焦点的双曲线方程是 (4) 已知点,动点到与的距离之差是6,则点的轨迹是 ,其轨迹方程是 (5) 双曲线方程为,则焦点坐标为 ,顶点坐标为 ,实轴长为 ,虚轴长为 ,离心率为 ,准线方程为 ,渐进线方程为(6) 已知双曲线的对称轴为坐标轴,一条渐近线为,则双曲线的离心率为 (7) 已知双曲线的两焦点F1、F2,点P在双曲线上且满足,则F1PF2的面积为_(8) 椭圆

4、 ()离心率为,则双曲线的离心率为(9) 过双曲线=1的右焦点F作直线交双曲线于A, B两点,若|AB|=4,则这样的直线有 条(10) “ab0”是“方程表示双曲线”的 条件(11) 已知双曲线的中心在原点,两个焦点分别为和,点在双曲线上且,且的面积为1,则双曲线的方程为_(12) 双曲线的两条渐近线互相垂直,则双曲线的离心率为(13) 设是双曲线上一点,双曲线的一条渐近线方程为,分别是双曲线的左、右焦点,若,则的值为(14)三、抛物线项目内容定义图形标准方程几何性质范围开口方向顶点坐标焦点坐标准线方程对称轴离心率通径长焦半径(1) 已知抛物线顶点在原点,对称轴是x轴,抛物线上的点到焦点的距

5、离为5,求抛物线的方程和n的值(2) 焦点在直线上的抛物线标准方程是 (3) 若抛物线上一点的横坐标为9,它到焦点的距离为10,则抛物线方程是 ,点的坐标是 (4) 抛物线的准线方程是 ,焦点坐标是 (5) 已知抛物线C:的焦点为F,过点F的直线l与C相交于A、B(1) 若,求直线l的方程(2) 求的最小值(6) 抛物线上一点A的纵坐标为4,则点A与抛物线焦点的距离为(7) 过抛物线的焦点作直线交抛物线于点两点,若,则PQ中点M到抛物线准线的距离为(8) 过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=(9) 如果方程y=kx+3表示倾斜角为钝角的直线,那么方程kx2+3y2=1表示的曲线是(10) 已知抛物线顶点在原点,焦点在x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论