小学数学《三角形内角和》教学设计_第1页
小学数学《三角形内角和》教学设计_第2页
小学数学《三角形内角和》教学设计_第3页
小学数学《三角形内角和》教学设计_第4页
小学数学《三角形内角和》教学设计_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小学数学三角形内角和教学设计作为一位无私奉献的人民教师,时常需要准备好教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么应当如何写教学设计呢?下面是小编为大家整理的小学数学三角形内角和教学设计,欢迎阅读与收藏。小学数学三角形内角和教学设计1教材内容:北师大版义务教育课程标准实验教材四年级下册。教学目标:1、经历观察、猜想、实验、验证等数学活动,探索并发现三角形的内角和180。在实验活动中,体验探索的过程和方法。2、掌握三角形内角和是180这一性质,并能应用这一性质解决一些简单的问题。3、经历探究过程,发展推理能力,感受数学的逻辑美。教学难点、重点:经历观察、猜想、实验、验证

2、等数学活动,探索并发现三角形的内角和规律。教具准备:直角三角形、锐角三角形、钝角三角形各3个,大三角形、小三角形各1个。学具准备:直角三角形、锐角三角形、钝角三角形各3个。教学设计意图:“三角形的内角和180”是三角形的一个重要性质,教材通过多种方法的操作实验,让学生确信这一个性质的正确性。根据学生已有的知识经验和教材的内容特点,本着“学生的数学学习过程是一个自主构建自己对数学知识的理解过程”的教学理念,采用探究式教学方式,让学生经历观察、猜想、实验、反思等数学活动,体验知识的形成过程。整个教学设计力求改变学生的学习方式,突出学生的主体性。在教师的组织引导下,让学生在开放的学习过程中,自始至终

3、处于积极状态,主动参与学习过程,自主地进行探索与发现,多角度和多样化地解决问题,从而实现知识的自我建构,掌握科学研究的方法,形成实事求事的科学探究精神。教学过程:活动一:设疑激趣师:我们已经认识了三角形,关于三角形你知道了什么?生1:三角形有3条边、3个角。生2:三角形按角分可以分为锐角三角形、直角三角形、钝角三角形;三角形按边分可以分为等腰三角形和不等边三角形。生3:每种三角形都至少有两个锐角。师:三角形有3个角,这3个角又叫三角形的内角。三角形按内角的不同分为锐角三角形、直角三角形、钝角三角形。师:能不能画一个含有两个直角或两个钝角的三角形呢?为什么?生1:我试着画过,画不出来。生2:因为

4、每个三角形至少有两个锐角,所以不可能画出含有两个直角或两个钝角的三角形。生3:三角形的内角和是180,两个直角的和已经是180,所以不可能。师:你能解释一下什么是“三角形的内角和”吗?你是怎样知道“三角形的内角和是180”的?生:把三角形的三个内角的度数相加就是三角形的内角和。“三角形的内角和是180”我是从书上看到的。师:你验证过了吗?生:没有。师:三角形的内角和是不是180?咱们还没有认真地研究过,接下来,我们就一起来研究三角形的内角和。设计意图:“我们已经认识了三角形,关于三角形你知道什么?”课一开始,教师就设计了一个空间容量比较大的问题,旨在让学生自主复习三角形的有关知识,引出三角形的

5、内角概念。然后创设一个能激发学生探究欲望的问题:“能不能画出一个含有两个直角或两个钝角的三角形呢?”有的学生通过动手画,发现一个三角形中不可能有两个直角或两个钝角;有的学生认为三角形的内角和是180,两个直角的和已是180,所以不可能。这种认识可能来自于书本,也可能来自于家长的辅导,但学生对于“三角形的内角和是180”的体验是没有的,学生对所学的知识仅仅还是一种机械的识记,因此“三角形的内角和是否为180”就成了学生急切需要探究的问题。活动二:自主探究师:请同学们拿出课前准备的材料,自己想办法验证三角形的内角和是不是180。?学生动手操作验证。师:请大家静静地思考1分钟,将刚才的实验过程在脑中

6、梳理一下。现在请把自己的研究过程、结果跟大家交流一下。生1:我是用量角器测量的,我量的是直角三角形:90。+ 42。+47。=179。生2:我量的也是直角三角形:90。+43。+48。=181。生3:我量的是锐角三角形:32。+65。+83。=180。生4:我量的是钝角三角形:120。+32。+30。=182。生5:师:看到这些度量结果,你有什么想法?生1:为什么他们测量的结果会不相同?生2:也许我们测量的方法不精确。生3:也许我们的量角器不标准。生4:也可能三角形的内角和不一定都是180。师:是呀,用量角器度量容易出现误差,但这些度量的结果还是比较接近的,都在180左右。师:有没有没使用量角

7、器来验证的呢?生:我是用三个相同的三角形来接的(如图)。1、2、3刚好拼成一个平角,所以三角形的内角和是180。师:你怎么知道这三个角拼成的大角刚好是一个平角呢?有办法验证吗?生1:用量角器测量不就知道了吗?生2:用三角板的两个直角去拼来验证。生3:因为平角的两条边成一条直线,所以可用直尺来检验。生4:再拿三个相同的三角形按上面的方法进行拼,这样6个相同的三角形,中间就可以拼出一个周角(如图),周角的一半刚好是平角。师:通过刚才的验证,可以说明1、2、3拼成的角是平角,那么锐角三角形的三个内角能拼成一个平角吗?钝角三角形呢?请大家试一试。师:如果现在只有一个三角形怎么办?生:我是将锐角三角形的

8、三个角分别撕下来,拼成一个平角,平角是180所以锐角三角形的内角和是180。师:直角三角形、钝角三角形行吗?来试一试。生1:老师,不剪下三角形的三个内角也可以验证。只要将三角形的三个内角折拼在一起,看看是不是拼成一个平角就可以了。师:大家就用折拼的方法试一试。学生操作验证。师:刚才我们除了用量角器度量的方法,同学们还想出了其他一些方法:用三个相同的三角形拼、剪拼、折拼等方法,这些方法形式上看起来不一样,其实有共同点吗?生:都是将三角形的三个内角拼在一起,组成一个平角来验证三角形的内角和是不是180。师:通过上面的实验,你 可以得出什么结论?生:三角形的内角和是180。师:是任意三角形吗?刚才我

9、们才验证了几个三角形呀?怎么就可以说是任意三角形呢?生:三角形按角分只有锐角三角形、直角三角形、钝角三角形三种,刚才我们都验证过了。师:(出示一个大三角形)它的内角和是多少度?如果将这个三角形缩小(出示一个小三角形),它的内角和又是多少度?为什么?生:三角形的三条边缩短了,可它的三个角的大小没变,所以它的内角和还是180。师生小结:三角形不论形状、大小,它的内角和总是180。设计意图:学生明确探究主题后,教师只为学生提供探究所需的材料,而不直接给出实验的方法和程序,激励学生自己想办法实验验证,获得结论。然后引导学生交流、评价、反思与提升。验证过程中较好地体现了解决同一问题思维方法,验证策略的多

10、样性。促进了学生发散思维能力的提高,提升了思维品质。活动三:应用拓展1、计算下面各个三角形中的B的度数。师:(图2)怎样求B?生:180。-90。-55。=35。师:还有不同的解法吗?生:180。2-55。=35。,因为三角形的内角和是180。,其中一个直角是90。,另外两个锐角的和刚好是90。师:是不是任意一个直角三角形的两锐角和都是90。呢?能验证一下吗?生:因为任意三角形的内角和是180。,其中一个直角是90。,所以其他两个锐角的和肯定是90。师:有没有反对意见或表示怀疑的?从中我们可以发现一条什么规律?生:直角三角形的两个锐角和是90。2、一个等腰三角形顶角是90。,两个底角分别是多少

11、度?3、等边三角形的每个内角是多少度?师:现在你能解决为什么一个三角形里不能有两个直角或两个钝角吗?生:略。师:通过这节课的学习,你还有什么疑问或还想研究什么问题?生:三角形有内角和,三角形有外角和吗?师:你知道三角形的外角在哪儿吗?三角形有外角和,它的外角和是多少度呢?有兴趣的同学请课后研究。课末,教师激励学生提出新的问题:通过这节课的学习,你还有什么疑问或者还想研究什么问题?培养学生的问题意识,同时让学生带着问题走出教室,拓展学生数学学习的时间和空间。小学数学三角形内角和教学设计2教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180。2、已知三角形

12、两个角的度数,会求出第三个角的度数。3、经历三角形内角和的研究方法,感受数学研究方法。教学重点:1、探索和发现三角形三个内角的度数和等于180。2、已知三角形两个角的度数,会求出第三个角的度数。教学难点:掌握探究方法(猜想验证归纳总结),学会用“转化”的数学思想探究三角形内角和。教学用具:表格、课件。学具准备:各种三角形、剪刀、量角器。一、创设情境揭示课题。1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。生1:大三角形大(个子大)生2

13、:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。二、自主探究,合作交流。(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)了解活动要求:(屏幕显示)A、在练习本上

14、画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形内角和。C、讨论:从刚才的测量和计算结果中,你发现了什么?(引导生回顾活动要求)小组合作。汇报交流。你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?(引导学生发现每个三角形的三个内角和都在180,左右。)(2)提出猜想刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)活动二:拼一拼,验证猜想这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)引导:1

15、80,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180)。(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?(3)分组汇报,讨论质疑(4)课件演示,验证结果活动三:折一折师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180,)。讨论

16、:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?提问:还有没有其它的方法?3、回顾两种方法,归纳总结,得出结论。(1)引导学生得出结论。孩子们,三角形内角和到底等于多少度呢?”学生答:“180!”(2)总结方法,齐读结论我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)(3)解释测量误差为什么我们刚才通过测量,计算出来的三角形内角和不是180,呢?那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180(三)回顾问题:现在你知道这两个三角形谁说得对了吗?(都不对!)为什么?请大家一起,自信肯定的告诉我。生:因为三角形内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论