




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、16(选修4-4:坐标系与参数方程)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系. 已知射线与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为 .考点分析:本题考察平面直角坐标与极坐标系下的曲线方程交点.难易度:解析:在直角坐标系下的一般方程为,将参数方程(t为参数)转化为直角坐标系下的一般方程为表示一条抛物线,联立上面两个方程消去有,设两点及其中点的横坐标分别为,则有韦达定理,又由于点点在直线上,因此的中点.(2012湖北)(23)(本小题满分10分)选修44:坐标系与参数方程 在直角坐标中,圆,圆。 ()在以O为极点,x轴正半轴为极轴的极坐标系中,分别
2、写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示); ()求出的公共弦的参数方程。【答案及解析】【点评】本题主要考查直线的参数方程和圆的极坐标方程、普通方程与参数方程的互化、极坐标系的组成本题要注意圆的圆心为半径为,圆的圆心为半径为,从而写出它们的极坐标方程;对于两圆的公共弦,可以先求出其代数形式,然后化成参数形式,也可以直接根据直线的参数形式写出。对于极坐标和参数方程的考查,主要集中在常见曲线的考查上,题目以中低档题为主(2012辽宁)CD(16)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动。当圆滚动到圆心位
3、于(2,1)时,的坐标为_。解析:根据题意可知圆滚动了2单位个弧长,点P旋转了弧度,此时点的坐标为.另解1:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为,且,则点P的坐标为,即.(2012山东)C.(坐标系与参数方程选做题)直线与圆相交的弦长为 .(2012陕西)10如图,在极坐标系中,过点的直线与极轴的夹角,若将的极坐标方程写成的形式,则 。【解析】设直线上的任一点为P,因为,所以,根据正弦定理得,即,即。【答案】(2012上海)(23)本小题满分10分)选修44;坐标系与参数方程已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形的顶点都在
4、上,且依逆时针次序排列,点的极坐标为(1)求点的直角坐标;(2)设为上任意一点,求的取值范围。【解析】(1)点的极坐标为 点的直角坐标为 (2)设;则 (lfxlby)(24)(本小题满分10分)选修:不等式选讲已知函数(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围。【解析】(1)当时, 或或 或 (2)原命题在上恒成立在上恒成立在上恒成立(2012新课标)(23)(本小题满分10分)选修44:坐标系与参数方程 在直角坐标中,圆,圆。 ()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示); ()求圆的公共弦的参数方程。【答案与
5、解析】【点评】本题主要考查点的极坐标表示、圆的极坐标方程、参数方程的表示及参数方程与一般方程的转换、解方程组的知识,难度较小。本题要注意圆的圆心为半径为,圆的圆心为半径为,从而写出它们的极坐标方程;对于两圆的公共弦,可以先求出其代数形式,然后化成参数形式,也可以直接根据直线的参数形式写出。 (24)(本小题满分10分)选修45:不等式选讲 已知,不等式的解集为。 ()求a的值; ()若恒成立,求k的取值范围。【答案与解析】【点评】本题主要考查分段函数、不等式的基本性质、绝对值不等式及其运用,考查分类讨论思想在解题中的灵活运用,第()问,要真对的取值情况进行讨论,第()问要真对的正负进行讨论从而用分段函数表示,进而求出k的取值范围。本题属于中档题,难度适中平时复习中,要切实注意绝对值不等式的性质与其灵活运用。(2012辽宁文)15. A (不等式选做题)若存在实数使成立,则实数的取值范围是 解析:由题意知左边的最小值小于或等于3即可,根据不等式的性质得答案:点评:本题主要考察绝对值不等式的性质及其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医学综合笔试医师资格考试二级模拟题集与答案详解
- 金融审计合规保密措施
- 2025年催乳师高级实操技能提升方法与试题解析
- 2025年传统行业数字化转型招聘面试指南与模拟题集
- 2025年国际物流师职业资格认证考试模拟题集
- 2025年中国民间剪纸艺术传承与创新师认证考试模拟题集萃
- 2025年初级美术设计技能水平评估题集
- 家居装饰售后服务及质量保证措施
- 2025-2025学年度班级建设计划
- 2025年后端开发工程师中级面试技巧与模拟题集
- (完整)《走遍德国》配套练习答案
- GB/T 34239-2017聚3-羟基丁酸-戊酸酯/聚乳酸(PHBV/PLA)共混物长丝
- GB/T 26814-2011微波消解装置
- GB/T 13384-2008机电产品包装通用技术条件
- 粘膜免疫系统概述
- 钢板桩及支撑施工方案
- 新部编版四年级上册语文全册完整课件
- 政府信息公开申请表
- 冷藏车保温箱冰排使用记录
- FANUC工业机器人离线与应用项目7 工业机器人KAREL程序
- 综合能源管理解决方案(完整版)
评论
0/150
提交评论