




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1听雨C书屋 1、能较熟练地运用对数运算法则、能较熟练地运用对数运算法则解决问题解决问题; 2、加强数学应用意识的训练,、加强数学应用意识的训练, 提高解决应用问题的能力。提高解决应用问题的能力。2听雨C书屋复复 习习1.对数的定义对数的定义:logaNb其中其中a(0, 1)(1, );N(0, ).2.指数式与对数式的互化指数式与对数式的互化:) 10( logaabNNaab且NaNalog3.重要公式重要公式:(1)负数与零没有对数;负数与零没有对数;(2) loga10,logaa1; (3)对数恒等式对数恒等式:3听雨C书屋4.指数的运算法则:指数的运算法则:mnm naaa mm
2、 nnaaa ()m nmnaa 4听雨C书屋积、商、幂的对数运算法则:积、商、幂的对数运算法则:如果如果a0,且,且a1,M0,N0有:有:NMMNaaaloglog)(logNMNMaaalogloglogR)M(nnManaloglogMnPMManPanpalogloglog)(logRnnananaaaaMMMMMlogloglog)M(log21n21MMaalog1log5听雨C书屋例例1:计算计算:25log) 1 (5)24(log(2) 5725100lg)3(解解:25log25log) 1 (255522log1422log=5+14=19522log724log(2)
3、原式原式5210lg10lg100lg)3(525256听雨C书屋50lg2lg)5)(lg2(218lg7lg37lg214lg) 1 (例例2:计算计算:解解:105lg2lg)5(lg50lg2lg)5)(lg2(2210lg5lg2lg)5(lg22lg5lg2lg)5(lg22lg2lg5lg5lg1 18lg7lg37lg214lg118lg7lg)37lg(14lg218)37(714lg201lg 7听雨C书屋2lglg2lg(2 )log.xxyxyy2.2.已已知知求求的的值值例例3:解解:22lg()lg(2 )(2 )xyxyxyxy 由由已已知知得得22540.xxy
4、y ( - )( -4 )0.4x yxyxyxy 即即或或20,20.xyxy ().4xyxy舍舍去去 即即2224loglog4log ( 2)4xy8听雨C书屋(1)lg2+lg5=_(2)2lg5+ lg8+lg5lg20+lg22=_23例例4化简并求值化简并求值22(3)log (123)log (123)(4)lg( 3535)9听雨C书屋2 2已已知知l lg gx x+ +l lg gy y= =2 2l lg g( (x x- -2 2y y) ), ,求求l lo og gy3.x3 31 1. .已已知知: l lo og g l lo og g ( (l ln n)
5、 ) 0 0,求求x xx x 2 22 24 4. .若若f f( (l lo og g x x) )x xx x, ,求求f f( (x x) ), ,f f( (1 1) ), ,函函数数f f( (x x) )的的值值域域. . 3 3x x4 44 42 23 33 32 2. .若若l lo og gy y4 4,则则x x, ,y y间间关关系系式式正正确确的的是是( ) A A. .x xy y B B. .y y6 64 4x x C C. .y y3 3x x DD. .x xy y 2 21 12 21 12 25 5. .如如果果方方程程l lg g x x( (l l
6、g g2 2l lg g3 3) )l lg gx xl lg g2 2l lg g3 30 0 的的两两根根为为x x , ,x x , ,则则x x x x 的的值值为为_ _ _ _ _ _ _ _ _ 10听雨C书屋一、对数的换底公式一、对数的换底公式: 如何证明呢如何证明呢?aNNccalogloglog)0), 1()1 , 0(,( Nca11听雨C书屋证明证明:设:设 由对数的定义可以得:由对数的定义可以得: paN 即证得即证得 pNalogpccaNloglogapNccloglogaNpccloglogaNNccalogloglog通过换底公式,人们通过换底公式,人们可以
7、把其他底的对数可以把其他底的对数转换为以转换为以10或或e为底为底的对数,经过查表就的对数,经过查表就能求出任意不为能求出任意不为1的的正数为底的对数。正数为底的对数。12听雨C书屋二、几个重要的推论二、几个重要的推论: 如何证明呢如何证明呢?abbalog1logNmnNanamloglog), 1 () 1 , 0(,ba13听雨C书屋证明证明:利用换底公式得:利用换底公式得:即证得即证得 NmnNanamlogloglglglgloglglglgmnaNnNnNnNamamamlogaNmnaNlglg14听雨C书屋证明证明:由换底公式由换底公式 abbalog1log即即 abbalo
8、glog1lglglglgbaab1logloglogacbcba推论推论:15听雨C书屋换底公式换底公式)0; 10; 10(logloglog bccaaabbcca且且且且任何对数值,都可以换成任何有意义的底的任何对数值,都可以换成任何有意义的底的两个对数的商两个对数的商一层变两层,底数在底层一层变两层,底数在底层245(1)log 3mlog 3_(2)lg2a lg3blog 12_若若,则则若若,则则ab11.log blog a 推推论论nmaam2.logblog bn 推推论论16听雨C书屋例例1:计算计算:解解: 27log19 27log19333log23log2332
9、3 8log7log3log2732 9lg212log110033317听雨C书屋 9lg212log1100333 8log7log3log27322lg2lg32lg3lg3lg7lg7lg8lg3解解:例例1:计算计算: 27log19 8log7log3log273218听雨C书屋解解: 9lg212log11003339lg2122log103339lg102392315 9lg212log1100333例例1:计算计算: 27log19 8log7log3log273219听雨C书屋解解:.)21(2,10054:2的值求设例baba10054ba10log10log100log22242a2log224log245log100log55255b2log1110log12)21(252ba25log2log22log5log12log21010551020听雨C书屋. 9log,7log,5log:33539表示试用已知例nmnm解解:7log, 5log215log5log33392nm7log,25log33nmnm227log5log235log23log29log333353521听雨C书屋.,07lg5lglg)7lg5(lglg:421212xxxxxx求的两根分别为方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安装施工合同范本
- 矿山建设工程合同范本
- 装饰木板采购合同范本
- 劳务合同范本文库
- 获得性大疱性表皮松解症护理查房
- 供暖服务评估合同
- 混凝土单包工合同范本
- 自建铺面出售合同范本
- 简易加盟餐饮合同范本
- 订单农业合同范本 俄语
- 粮食仓储(粮库)安全生产标准化管理体系全套资料汇编(2019-2020新标准实施模板)
- 喜茶运营管理手册和员工操作管理手册
- 比亚迪汉DM-i说明书
- 心肾综合征及其临床处理
- 普通高中课程方案
- 2022年山东高考生物试卷真题及答案详解(精校版)
- GB/T 38936-2020高温渗碳轴承钢
- 高考地理一轮复习课件 【知识精讲+高效课堂】 农业区位因素及其变化
- 教师专业发展与名师成长(学校师范专业公共课)
- 互通立交设计课件
- 生物竞赛辅导 动物行为学第七章 行为发育(38)课件
评论
0/150
提交评论