数字图像处理基于DCT的图像压缩_第1页
数字图像处理基于DCT的图像压缩_第2页
数字图像处理基于DCT的图像压缩_第3页
数字图像处理基于DCT的图像压缩_第4页
数字图像处理基于DCT的图像压缩_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数字图像处理基于DCT的图像压缩姓名:张凯学号:104753130780专业:空间技术处理及应用技术基于DCT的图像压缩算法介绍DCT变换的全称是离散余弦变换(Discrete Cosine Transform),离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的。通过数字信号处理的学习我们知道实函数的傅立叶变换获得的频谱大多是复数,而偶函数的傅立叶变换结果是实函数。以此为基础,使信号函数成为偶函数,去掉频谱函数的虚部,是余弦变换的特点之一。它可以将将一组光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,再

2、转回原来形式的数据时,显然与原始数据有些差异,但是人类的眼睛却是不容易辨认出来。压缩时,将原始图像数据分成8*8数据单元矩阵,例如亮度值在第一个矩阵内。理论背景视频信号的频谱线在0-6MHz范围内,而且1幅视频图像内包含的大多数为低频频谱线,只在占图像区域比例很低的图像边缘的视频信号中才含有高频的谱线。因此,在视频信号数字处理时,可根据频谱因素分配比特数:对包含信息量大的低频谱区域分配较多的比特数,对包含信息量低的高频 谱区域分配较少的比特数,而图像质量并没有可察觉的损伤,达到码率压缩的目的。然而,这一切要在低熵(Entropy)值的情况下,才能达到有效的编码。能否对一串数据进行有效

3、的编码,取决于每个数据出现的概率。每个数据出现的概率差别大,就表明熵值低, 可以对该串数据进行高效编码。反之,出现的概率差别小,熵值高,则不能进行高效编码。视频信号的数字化是在规定的取样频率下由A/D转换器对视频电平转换而来的,每个像素的视频信号幅度随着每层的时间而周期性地变化。每个像素的平均信息量的总和为总平均信息量,即熵值。由于每个视频电平发生几乎具有相等的概率,所以视频信号的熵值很高。 熵值是一个定义码率压缩率的参数,视频图像的压缩率依赖于视频信号的熵值,在多数情况下视频信号为高熵值,要进行高效编码,就要将高熵值变为低熵值。怎样变成低熵值呢?这就需要分析视频频谱的特点

4、。大多数情况下,视频频谱的幅度随着频率的升高而降低。其中 低频频谱在几乎相等的概率下获得0到最高的电平。与此相对照,高频频谱通常得到的是低电平及稀少的高电平。显然,低频频谱具有较高的熵值,高频频谱具有较低的熵值。据此,可对视频的低频分量和高频分量分别处理,获得高频的压缩值。 应用自从Ahmed和Rao于1974年给出了离散余弦变换(DCT)的定义以来,离散余弦变换(DCT)与改进型离散余弦变换(MDCT)就成为广泛应用于信号处理和图像处理特别是用于图像压缩和语音压缩编解码的重要工具和技术,一直是国际学术界和高科技产业界的研究热点。现在的很多图像和视频编码标准(如MPEG-1

5、 , MEPG-2 ,MEPG-4中的第二部分)都要求实现整数的8×8 的DCT和IDCT,而MDCT 和IMDCT 则主要被应用于音频信号的编解码中(如MPEG-1 ,MEPG-2 和AC-等标准的音频编码部分)。正是由于这类变换被广泛采用,对于这类变换的快速算法的研究才显得尤为重要。特别是针对特定的应用条件下的快速算法的研究对于提高整个系统的性能表现有很大帮助。 功能由上面的引用可见,码率压缩基于变换编码和熵值编码两种算法。前者用于降低熵值,后者将数据变为可降低比特数的有效编码方式。在MPE

6、G标准中,变换编码采用的是DCT,变换过程本身虽然并不产生码率压缩作用,但是变换后的频率系数却非常有利于码率压缩。 实际上压缩数字视频信号的整个过程分为块取样、DCT、量化、编码4个主要过程进行-首先在时间域将原始图像分成N(水平)×N(垂直)取样块,根据需要可选择4×4、4×8、8×8、8×16、16×16等块,这些取样的像素块代表了原图像帧各像素的灰度值,其范围在139-163之间,并依序送入DCT编码器,以便将取样块由时间域转换为频率域的DCT系数块。DCT系统的转换分别在每个取样块中进行,这些块中每个取样是数字化后的

7、值,表示一场中对应像素的视频信号幅度值MatLab源代码RGB=imread('C:UserszhangkaiDesktop1.jpg'); %读取图像到RGBRGB=imresize(RGB,168,224); %改变图像大小imwrite(RGB,'C:UserszhangkaiDesktopstart.jpg'); %将改变后的图像存入start.jpg R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);figure,imshow(RGB),title('原来的RGB图像'); %RGB->YUV Y=0.

8、299*double(R)+0.587*double(G)+0.114*double(B); U=-0.169*double(R)-0.3316*double(G)+0.5*double(B); V=0.5*double(R)-0.4186*double(G)-0.0813*double(B); YUV=cat(3,Y,U,V);%YUV图像 figure,imshow(uint8(YUV),title('通过计算得到的YUV图像') T=dctmtx(8);%产生一个8×8的DCI变换矩阵 %进行DCT变换 BY BU BV 是double类型 BY=blkproc

9、(Y,8 8,'P1*x*P2',T,T'); BU=blkproc(U,8 8,'P1*x*P2',T,T'); BV=blkproc(V,8 8,'P1*x*P2',T,T'); a=16 11 10 16 24 40 51 61; 12 12 14 19 26 58 60 55; 14 13 16 24 40 57 69 55; 14 17 22 29 51 87 80 62; 18 22 37 56 68 109 103 77; 24 35 55 64 81 104 113 92; 49 64 78 87 103

10、121 120 101; 72 92 95 98 112 100 103 99; %量化值 b=17 18 24 47 99 99 99 99; 18 21 26 66 99 99 99 99; 24 26 56 99 99 99 99 99; 47 66 99 99 99 99 99 99; 99 99 99 99 99 99 99 99; 99 99 99 99 99 99 99 99; 99 99 99 99 99 99 99 99; 99 99 99 99 99 99 99 99; %BY2 BU2 BV2是double类型BY2=blkproc(BY,8 8,'x./P1&#

11、39;,a); BU2=blkproc(BU,8 8,'x./P1',b); BV2=blkproc(BV,8 8,'x./P1',b); %这里进行取整量化,BY3 BU3 BV3是uint8类型 BY3=int8(BY2); BU3=int8(BU2); BV3=int8(BV2); %BY4 BU4 BV4是double类型 BY4=blkproc(double(BY3),8 8,'x.*P1',a); BU4=blkproc(double(BU3),8 8,'x.*P1',b); BV4=blkproc(double(BV

12、3),8 8,'x.*P1',b); mask= 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1; %BY5 BU5 BV5是double类型 BY5=blkproc(BY4,8 8,'P1.*x',mask); BU5=blkproc(BU4,8 8,'P1.*x',mask); BV5=blkproc(BV4,8 8,

13、9;P1.*x',mask); %YI UI VI是double类型YI=blkproc(double(BY5),8 8,'P1*x*P2',T',T); UI=blkproc(double(BU5),8 8,'P1*x*P2',T',T); VI=blkproc(double(BV5),8 8,'P1*x*P2',T',T); %YUVI是double类型YUVI=cat(3,uint8(YI),uint8(UI),uint8(VI);%经过DCT变换和量化后的YUV图像figure,imshow(YUVI),title('经过DCT变换和量化后的YUV图像'); RI=YI-0.001*UI+1.402*VI; GI=YI-0.344*UI-0.714*VI; BI=YI+1.772*UI+0.001*VI; RGBI=cat(3,RI,GI,BI);%经过DCT变换和量化后的RGB图像RGBI=uint8(RGBI); figure,imshow(RGBI),title('经过DCT变换和量化后的RGB图像'); imwri

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论