傅立叶变换的深入理解_第1页
傅立叶变换的深入理解_第2页
傅立叶变换的深入理解_第3页
傅立叶变换的深入理解_第4页
傅立叶变换的深入理解_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、傅立叶变换的深入理解 收藏1 变换的目的,意义,应用。2 傅里叶级数与傅里叶变换的区别和联系3 连续傅里叶变换,离散时间傅里叶变换,离散傅里叶变换,序列的傅里叶变换,各自的定义,区别,联系。3 快速傅里叶变换的实质,常用的算法之间的区别和联系,各自的优势。4 fft的应用讨论:、变换是时间变量函数变成相应变换域的某种变量函数,这样使运算简单,处理方便。变换域变换有(以频域特性为主要研究对象)、与(注重研究极点及零点分析)、等。、傅立叶变换是非周期信号作为周期信号的傅立叶级数(FST)一种极限。傅立叶级数周期信号,傅立叶变换非周期信号、非周期连续 FT 连续非周期  

2、;       连续周期 FST 非周期离散         非周期离散DTFT 连续周期         离散周期DFT 周期离散         离散傅里叶变换(DFT)与序列傅里叶变换(DTFT)都跟变换有关,DTFT是单位圆上的变换,DFT是变换在单位圆的均匀抽样。4、快速傅里叶变换(FFT

3、)的实质是“分而治之”,利用对称性、周期性和可约性将某些项合并,将DFT序列分解为短序列,降低运算次数,提高运算速度。5、快速傅里叶变换的应用十分广泛,凡是可以利用傅里叶变换来进行分析、综合、变换的地方,都可以利用FFT算法及运用数字计算技术来加以实现。FFT在数字通信、语音分析、图像处理、匹配滤波等方面有广泛的应用。*时域上看不清,在频域上也许会简单,由于T与F的倒数关系,T上的采样会在F上无限,反之也是如此。宏观与微观之间的关系吧。-从滤波关点看,复立叶变换相当于等宽带的Q值不等的滤波器组对信号进行滤波,采用常数Q的滤波器组则是小波分析-傅里叶变换(FT)是一种将信号从时域变换到频域的变换

4、形式。它在声学、电信、电力系统、信号处理等领域有广泛的应用。我们希望能在计算机上实现信号的频谱分析或其它工作。计算机对信号的要求是:在时域和频域都应该是离散的,而且都应该是有限长的。而傅里叶变换(FT)仅能处理连续信号,DFT就是应这种需要而诞生的。它是傅里叶变换在离散域的表示形式。但是一般来说,DFT的运算量是非常大的。在1965年首次提出快速傅里叶变换算法FFT之前,其应用领域一直难以拓展,是FFT的提出使DFT的实现变得接近实时。DFT的应用领域也得以迅速拓展。除了一些速度要求非常高的场合之外,FFT算法基本上可以满足工业应用的要求。由于数字信号处理的其它运算都可以由DFT来实现,因此F

5、FT算法是数字信号处理的重要基石。-对傅立叶变换的理解傅立叶变化是对信号的正交分解,ejwt经过现行时不变系统后输出信号的形式不变,这无论在理论上还是实践上都有很大的意义。在数字信号出现后,DFT的快速形式FFT实现了计算机处理信号,提高了它的实用价值。傅立叶级数是傅立叶变换的特殊形式,其所处理的信号是周期的。如果取出周期信号的一个周期作为时域有限信号,对它的变换进行可以得到级数形式。在郑君里的信号与系统讲得很透彻。离散傅立叶变换和序列的傅立叶变换是相同的,连续傅立叶变换(FT)时域和频域都是连续的(周期信号的变换频域离散),离散时间傅立叶变换(DTFT)时域离散,频域连续且周期,离散傅里叶变

6、换(DFT)是对铁矾土的抽样。个人这么觉得-傅立叶级数一般可以理解为:信号可展开成正交函数线性组合的无穷级数     傅里叶变换就是对模拟信号进行数字化傅里叶处理,以便信号在处理后运算更方便。从物理方面来讨论傅立叶变换是一个密度函数的概念,是一个连续谱,包含了从零到无限高,     频的所有频率分量, 各频率分量的频率不成谐波 关系-还有一种说法,是我从别处看来的1:(时域)周期信号的频谱是离散的;离散的时间信号即(时间)序列的频谱是周期的。2:傅里叶变换主要是针对连续时间信号,离散时间信号也可以应用;数字信号(离

7、散时间信号)主要使用离散FT,因为便于数字运算。3:离散FT等效于FT在在频域采样,变换后在频域也是离散序列。这样更利于数字运算。4:有限长序列可以看成周期序列的一个周期,所以有限长序列与周期序列没有本质区别(实际上就是一样的)。这样不论在时域还是频域,都可以表示(有限长)。同时还可以FFT。-从数学上看,离散傅立叶变换是一个特殊范德尔矩阵的变换,因为这种矩阵可以分解,才存在快速算法。-1.傅立叶分析的思想最早来自傅立叶对周期函数的研究,通过傅立叶级数可以把周期函数展开成无穷级数的形式.之后一百多年随着电力,电子,计算机技术的逐渐发展,傅立叶分析也得到越来越广泛的应用.对于变换的思想我觉得根本

8、来说是为了从不同的角度来认识信号,而对于不同的应用,也有不同的变换方法.而与变换紧密相关的另一个就是卷积的概念.2.傅立叶级数是以三角函数或指数函数为基对周期信号的无穷级数展开.如果把周期函数的周期取作无穷大,对傅立叶级数取极限即得到傅立叶变换.除了针对的信号不同,对于傅立叶级数,得到的是信号的频谱(来源于物理学中谱的概念),而傅立叶变换得到的是信号的频谱密度.当然,在引入冲击函数后,傅立叶级数是可以统一于傅立叶变换的.3.傅立叶级数(FS)     对应时域连续周期信号     傅立叶变换(FT) &#

9、160;   对应时域连续非周期信号     离散傅立叶级数(DFS)              对应时域离散周期信号     离散时间傅立叶变换(DTFT)     对应时域离散非周期信号     离散傅立叶变换(DFT)     更确切的说是把一

10、个离散非周期信号(N点长的序列)周期延拓成周期信号后,取傅立叶级数的主值区间得到的,所以是一种近似的变换,但是这种方法却方便计算机计算,随后也就有了快速算法即快速傅立叶变换(FFT)-DFT/FFT是将线性卷积转为循环卷积的有用工具,将卷积关系转为乘积关系,是绝大多数快速信号处理的出发点,几乎长盛不衰-最近毕设中用了下FFT的应用。在信号分析中,通过傅立叶换可以在频率中很容易的找出杂乱信号中各频率分量的幅度谱和相位谱。幅度谱可表示对应频率的能量,而相位谱可表示对应频率的相位特征。这在生理电信号分析,雷达信号中都有应用。-FT就是在另外一个DOMAIN来表示信号确定F 空间的每一个点不仅要观察T

11、 空间的一个点,而且要观察T 空间的所有的点以确定在该F 空间震动的强度(也就是频谱的数值)-TD-SCDMAmidamble码信道估计利用了时域圆周卷积等效于频域点乘特性,用到FFTuppch检测匹配滤波,循环相关,用到FFT-对于连续时间周期信号而言,其Fourier级数就是他的一个周期的截取后的非周期信号的的傅立叶变换采样,连续时间信号采样后所得到的离散信号的DTFT可看成原来连续时间傅立叶变换在横轴做一下模拟数字频率变换后进行周期延拓而成。离散傅里叶变换可以看成DTFT在主值区间(0到2*pi)的等间隔采样-今天才注意到这个帖子,谈谈我对连续信号的看法:对于时域上无限,频域上无限的连续

12、信号,也就是最一般信号,用傅里叶变换分析它(当然需要满足傅里叶变换存在的条件)。对于时域上有限的连续信号,同样可以用傅里叶变换分析它,但是用傅里叶级数的表示要简洁得多,傅里叶级数分解可以理解为信号在频域上的采样。即时域傅里叶级数分解对应于频域采样。对于频域上有限的连续信号,同样可以用傅里叶变换分析它,但是用时域采样样本内插的表示要简洁得多,这其实就是在频域上对信号进行傅里叶级数分解。即时域采样对应于频域傅里叶级数分解。-1.对于傅里叶级数,无论是连续信号或是离散信号,均是使用一组正交函数(正交集),对其进行加权求和,来逼近原始周期信号,通常来说,连续时间傅里叶级数的正交集中有无穷多个函数,而由

13、于离散时间正交函数都是周期的,若周期为N,则离散时间傅里叶级数的正交集中只有N个函数。nbsp;     在加权求和过程中所使用的加权系数就构成了周期信号的系数谱,对于连续周期信号,其系数谱是非周期的;而对于离散周期信号,其系数谱则是以N为周期的。2.傅里叶变换体现了信号的时域与频域之间的一种变换关系,我们可以由傅里叶级数的表达式不是十分严格的推导出来,连续时间信号的频谱是非周期的,而离散时间信号的频谱则是以2*pi为周期延拓的。并且,我们可以看到,傅里叶级数的系数是对应主值区间的非周期信号频谱的采样值;换句话说,一个非周期其信号的频谱是这个信号周期延拓

14、所得信号傅里叶级数系数的包络,两者在采样点上的值是相等的。      值得注意的是,一个周期信号的傅里叶变换是在其基波频率整数倍上的一串冲击,加权系数恰好是信号傅里叶级数的系数。3.DTFT与DFT的关系     我们知道,一个N点离散时间序列的傅里叶变换(DTFT)所的频谱是以(2*pi)为周期进行延拓的连续函数,由采样定理我们知道,时域进行采样,则频域周期延拓;同理,如果在频域进行采样,则时域也会周期延拓。离散傅里叶变换(DFT)就是基于这个理论,在频域进行采样,一个周期内采N个点(与序列点数相同)

15、,从而将信号的频谱离散化,得到一的重要的对应关系:一个N点的离散时间信号可以用频域内一个N点序列来唯一确定,这就是DFT表达式所揭示的内容。-我认为傅立叶的变换是对非周期信号的而言的变换得到的是连续的谱密度函数nw->W在B P.lathi 的线性系统与信号(刘树樘译)中有详细的讲述-付立叶变换是从付立叶级数推演而来的,付立叶级数是所有周期函数(信号)都可以分解成一系列的正交的三角函数,这样,周期函数对应的付立叶级数即是它的频谱函数,也就是分离的谱线。而为了分析非周期函数,引入了谱密度的概念,即非周期信号的谱函数无穷小,但是谱密度有值。这样,将非周期信号看成是周期无限长的周期信号,并引入

16、F(t)/T,即为非周期函数的谱密度函数。为了概念上的统一,引入了冲激函数的概念,这样,周期信号也可以有付立叶变换,其谱密度函数为冲激。付立叶变换对于连续时间信号的分析具有重要作用,用于分析信号的频率分量,或将信号在频域上进行处理。引用频域概念后,通信与数学的结合就更加紧密了。通信的发展其实就是数学的发展。至于离散付立叶变换,其实也是对数字信号变换到频域进行分析处理,它对数字信号处理的作用相当大。数字信号处理脱离了模拟时期对信号进行处理完全依赖于器件的境况,可以直接通过计算来进行信号处理。如数字滤波器,只是用系统的系数对进入的数字信号进行一定的计算,信号出系统后即得到处理后的数据在时域上的表达

17、。离散付立叶变换在理解上与连续信号的付立叶变换不太相同,主要是离散信号的付立叶变换汲及到周期延拓,以及圆周卷积等。快速离散付叶变换其实是一种对付立叶变换的算法,它的出现解决了离散付立叶变换的计算量极大、不实用的问题,使付立叶变换的计算量降低了一个或几个数量级,从而使离散付立叶变换得到了广泛应用。另外,FFT的出现也解决了相当多的计算问题,使得其它计算也可以通过FFT来解决。-意义 傅里叶变换具有惟一性.傅氏变换的性质揭示了信号的时域特性和频域特性之间的确定的内在联系.讨论傅里叶变换的性质,目的在于了解特性的内在联系; 用性质求F(); 了解在通信系统领域中的应用.-傅氏级数与傅氏变换目前我们熟

18、悉的是信号幅度随着时间变化而变化的常见表示方式,比如正弦信号的幅度随着时间按正弦函数的规律变化;另一方面,对于正弦信号,如果知道其振幅、频率和相位,则正弦信号的波形也惟一确定。根据这个原理和傅里叶级数理论,满足一定条件的周期信号都可以分解为不同频率的正弦分量的线性组合,从而我们用各个正弦分量的频率-幅度、频率-相位来表示周期信号的描述方式就称为周期信号的频谱表示,随着对信号研究的深入,我们将周期信号的频谱表示又推广到非周期信号的频谱表示,即通常的傅里叶变换。对于周期信号,其频谱一般用傅里叶级数表示,而傅里叶级数的系数就称为信号的频谱.-快速傅里叶变换fast Fourier trans for

19、mation进行有限离散傅里叶变换(DFT)的快速算法。简称FFT。一个复杂的波形可以分解为一系列谐波。针对这一物理现象,在数学上建立并发展了一套有效的研究方法,这就是傅里叶分析。利用电子计算机进行傅里叶分析,主要处理离散函数的傅里叶展开,也就是三角函数的插值问题 。一维DFT所作的工作主要是把一个N元数组A(i)(i0,1,N1)通过一种线性变换变成另一个N元数组X(i)(i0 ,N ,-1 ) 。如果直接计算全部数组元素大约需要进行 N2次的乘法和加法运算,当N很大时其计算量是很惊人的 。1965年美国人库利和图基提出一种能大幅度减少运算次数的快速算法,即FFT算法 ,它的基本原 理是将一

20、个变换分解为两个变换的乘积,并利用三角函数的周期性质,将原先的变换公式重新组合为新的公式 ,从而把运算次数减少到 Nlog2N 的量级 。这就是说,FFT算法比DFT算法提高工效 Nlog2N倍 ,例如N220时,约提高5万倍速度,可见当N很大时,这是一个了不起的提高。FFT技术在谱分析、数字滤波、结构分析 、系统分析、图像与信号处理,以及物探、天线、雷达nbsp;     在加权求和过程中所使用的加权系数就构成了周期信号的系数谱,对于连续周期信号,其系数谱是非周期的;而对于离散周期信号,其系数谱则是以N为周期的。2.傅里叶变换体现了信号的时域与频域之间

21、的一种变换关系,我们可以由傅里叶级数的表达式不是十分严格的推导出来,连续时间信号的频谱是非周期的,而离散时间信号的频谱则是以2*pi为周期延拓的。并且,我们可以看到,傅里叶级数的系数是对应主值区间的非周期信号频谱的采样值;换句话说,一个非周期其信号的频谱是这个信号周期延拓所得信号傅里叶级数系数的包络,两者在采样点上的值是相等的。      值得注意的是,一个周期信号的傅里叶变换是在其基波频率整数倍上的一串冲击,加权系数恰好是信号傅里叶级数的系数。3.DTFT与DFT的关系     我们知道,一个N点离散时

22、间序列的傅里叶变换(DTFT)所的频谱是以(2*pi)为周期进行延拓的连续函数,由采样定理我们知道,时域进行采样,则频域周期延拓;同理,如果在频域进行采样,则时域也会周期延拓。离散傅里叶变换(DFT)就是基于这个理论,在频域进行采样,一个周期内采N个点(与序列点数相同) ,从而将信号的频谱离散化,得到一的重要的对应关系:一个N点的离散时间信号可以用频域内一个N点序列来唯一确定,这就是DFT表达式所揭示的内容。-我认为傅立叶的变换是对非周期信号的而言的变换得到的是连续的谱密度函数nw->W在B P.lathi 的线性系统与信号(刘树樘译)中有详细的讲述-付立叶变换是从付立叶级数推演而来的,

23、付立叶级数是所有周期函数(信号)都可以分解成一系列的正交的三角函数,这样,周期函数对应的付立叶级数即是它的频谱函数,也就是分离的谱线。而为了分析非周期函数,引入了谱密度的概念,即非周期信号的谱函数无穷小,但是谱密度有值。这样,将非周期信号看成是周期无限长的周期信号,并引入F(t)/T,即为非周期函数的谱密度函数。为了概念上的统一,引入了冲激函数的概念,这样,周期信号也可以有付立叶变换,其谱密度函数为冲激。付立叶变换对于连续时间信号的分析具有重要作用,用于分析信号的频率分量,或将信号在频域上进行处理。引用频域概念后,通信与数学的结合就更加紧密了。通信的发展其实就是数学的发展。至于离散付立叶变换,

24、其实也是对数字信号变换到频域进行分析处理,它对数字信号处理的作用相当大。数字信号处理脱离了模拟时期对信号进行处理完全依赖于器件的境况,可以直接通过计算来进行信号处理。如数字滤波器,只是用系统的系数对进入的数字信号进行一定的计算,信号出系统后即得到处理后的数据在时域上的表达。离散付立叶变换在理解上与连续信号的付立叶变换不太相同,主要是离散信号的付立叶变换汲及到周期延拓,以及圆周卷积等。快速离散付叶变换其实是一种对付立叶变换的算法,它的出现解决了离散付立叶变换的计算量极大、不实用的问题,使付立叶变换的计算量降低了一个或几个数量级,从而使离散付立叶变换得到了广泛应用。另外,FFT的出现也解决了相当多的计算问题,使得其它计算也可以通过FFT来解决。-意义 傅里叶变换具有惟一性.傅氏变换的性质揭示了信号的时域特性和频域特性之间的确定的内在联系.讨论傅里叶变换的性质,目的在于了解特性的内在联系; 用性质求F(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论