第二章 空间与图形的相关知识_第1页
第二章 空间与图形的相关知识_第2页
第二章 空间与图形的相关知识_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 空间与图形的相关知识第一节 几何学发展简介几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、宽、窄、厚、薄等概念,并且逐步认识了这些概念之间、它们以及它们之间位置关系和数量关系之间的关系,这些后来就成了几何学的基本概念。 正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。 几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古

2、希腊都是几何学的重要发源地。大量出土文物证明,在我国的史前时期,人们已经掌握了许多几何的基本知识,这从远古时期人们使用过的物品中那许许多多精巧的、对称的图案的绘制,一些设计简单但是讲究体积和容积比例的器皿,都足以说明当时人们掌握的几何知识是多么丰富了。 几何之所以能成为一门系统的学科,希腊学者的工作曾起了十分关键的作用。两千多年前的古希腊商业繁荣,生产比较发达,一批学者热心追求科学知识,研究几何就是最感兴趣的内容,在这里应当提及的是哲学家、几何学家柏拉图和哲学家亚里士多德对发展几何学的贡献。  柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导逐步趋向于系统和严密的方

3、向发展。柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等几何学中,仍是运用三段论的形式来进行推理。 但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里得。 欧几里得在公元前300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些几何原理。他非常详尽的搜集了当时所能知道的一切几何事实,按照柏拉图和

4、亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨著几何原本。从几何原本发表开始,几何才真正成为了一个有着比较严密的理论系统和科学方法的学科。故后人称为欧几里德几何或欧氏几何。几何原本的伟大历史意义在于它是用公理法建立起演绎的数学体系的最早典范。在这部著作里,全部几何知识都是从最初的几个假设出发、运用逻辑推理的方法展开和叙述的。如果把整个欧氏几何比作一座大厦的话,那么这座大厦基本上是靠几个不加以定义的原始概念和五个公设、五个公理建造起来的。在长期对欧氏几何的研究过程中,人们发现它也有不足的地方。后来德国伟大的数学家希尔伯特于1899年发表了几何学基础,书中给出了点、直线与颊等不定义原始概念和20个公理,最终解决了几何原本中的缺陷,同时也完善了几何学的公理化方法。当然这如同对这座科学大厦作适当的修补,使其更加稳固而已。特别值得一提的是通过对欧氏第五公设的质疑,产生了与欧氏几何不同的新的几何学体系,即黎曼几何(黎氏几何)、罗巴切夫斯基几何(罗氏几何)。下面这张表就能说明一些它们的一些基本观

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论