版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数量积向量积溷合积ab cos|baba ,Prcos|bjba ,Prcos|ajab ajbbabPr| .Pr|bjaa 数量积也称为数量积也称为“点积点积”、“内积内积”.结论结论 两向量的数量积等于其中一个向量的两向量的数量积等于其中一个向量的模和另一个向量在这向量的方向上的投影的模和另一个向量在这向量的方向上的投影的乘积乘积. .关于数量积的说明:关于数量积的说明:0)2( ba.ba )(, 0 ba, 0| a, 0| b, 0cos .ba .|)1(2aaa )(,ba , 0cos . 0cos| baba, 0 .|cos|2aaaaa 证证证证 ,2 ,2 数量积符合
2、下列运算规律:数量积符合下列运算规律:(1 1)交换律)交换律:;abba (2 2)分配律)分配律:;)(cbcacba (3 3)若)若 为数为数: ),()()(bababa 若若 、 为数为数: ).()()(baba ,kajaiaazyx kbjbibbzyx 设设 ba)(kajaiazyx )(kbjbibzyx ,kji , 0 ikkjji, 1| kji. 1 kkjjiizzyyxxbabababa 数量积的坐标表达式数量积的坐标表达式 cos|baba ,|cosbaba 222222coszyxzyxzzyyxxbbbaaabababa 两向量夹角余弦的坐标表示式两
3、向量夹角余弦的坐标表示式 ba0 zzyyxxbababa由此可知两向量垂直的充要条件为由此可知两向量垂直的充要条件为例例 1 1 已知已知4, 1 , 1 a,2 , 2, 1 b,求,求(1)ba ;(2)a与与b的夹角;的夹角;(3)a在在b上的投影上的投影.解解ba )1(2)4()2(111 . 9 222222cos)2(zyxzyxzzyyxxbbbaaabababa ,21 ajbbabPr|)3( . 3|Pr bbaajb .43 例例 2 2 证明向量证明向量c与向量与向量acbbca)()( 垂直垂直.证证cacbbca )()()()(cacbcbca )(cacab
4、c 0 cacbbca )()( 设设O为为一一根根杠杠杆杆L的的支支点点,有有一一力力F作作用用于于这这杠杠杆杆上上P点点处处力力F与与OP的的夹夹角角为为 ,力力F对对支支点点O的的力力矩矩是是一一向向量量M,它它的的模模|FOQM sin|FOP M的方向垂直于的方向垂直于OP与与F所决所决定的平面定的平面, 指向符合右手系指向符合右手系.实例实例二、两向量的向量积二、两向量的向量积LFPQO 向量向量a与与b的的向量积向量积为为 bac sin|bac (其其中中 为为a与与b的的夹夹角角)定义定义c的的方方向向既既垂垂直直于于a,又又垂垂直直于于b,指指向向符符合合右右手手系系. .
5、关于向量积的说明:关于向量积的说明:. 0)1( aa)0sin0( ba)2(/. 0 ba)0, 0( ba向量积也称为向量积也称为“叉积叉积”、“外积外积”.向量积符合下列运算规律:向量积符合下列运算规律:(1).abba (2)分配律:)分配律:.)(cbcacba (3)若若 为数:为数: ).()()(bababa )(, 0 ba, 0| a, 0| b, 0sin , 0 )(0sin . 0sin| baba证证ba/ba/或或0 ,kajaiaazyx kbjbibbzyx 设设 ba)(kajaiazyx )(kbjbibzyx ,kji , 0 kkjjii, jik
6、, ikj ,kij . jki , ijk kbabajbabaibabaxyyxzxxzyzzy)()()( 向量积的坐标表达式向量积的坐标表达式向量积还可用三阶行列式表示向量积还可用三阶行列式表示zyxzyxbbbaaakjiba ba/zzyyxxbababa 由上式可推出由上式可推出例例 3 3 求求与与kjia423 ,kjib2 都都垂垂直直的的单单位位向向量量.解解zyxzyxbbbaaakjibac 211423 kji,510kj , 55510|22 c|0ccc .5152 kj例例 4 4 在在顶顶点点为为)2 , 1, 1( A、)2 , 6, 5( B和和)1,
7、3 , 1( C的的三三角角形形中中,求求AC边边上上的的高高BD.ABC解解D3, 4 , 0 AC0 , 5, 4 AB三角形三角形ABC的面积为的面积为|21ABACS 22216121521 ,225 | AC, 5)3(422 |21BDS | AC|521225BD . 5| BD定义定义 设已知三个向量设已知三个向量a、b、c,数量,数量cba )(称为这三个向量的称为这三个向量的混合积混合积,记为,记为cba. .cbacba )(zyxzyxzyxcccbbbaaa ,kajaiaazyx ,kbjbibbzyx 设设,kcjcicczyx 混合积的坐标表达式混合积的坐标表达
8、式三、向量的混合积三、向量的混合积(1)向量混合积的几何意义:)向量混合积的几何意义: 向量的混合积向量的混合积cbacba )(是这样是这样的一个数,它的绝对值表的一个数,它的绝对值表示以向量示以向量a、b、c为棱的为棱的平行六面体的体积平行六面体的体积.acbba 关于混合积的说明:关于混合积的说明:)2(cbacba )(acb )(.)(bac (3)三向量)三向量a、b、c共面共面. 0 cba 已已知知2 cba, 计计算算)()()(accbba .解解)()()(accbba )()accbbbcaba ccbcccacba )(0)()(acbaacaaba )(0)()(0
9、 0 0 0 cba )(cba )(2 2cba . 4 例例6例例 7 7 已知空间内不在一平面上的四点已知空间内不在一平面上的四点),(111zyxA、),(222zyxB、),(333zyxC、),(444zyxD, 求四面体的体积求四面体的体积.解解由由立立体体几几何何知知,四四面面体体的的体体积积等等于于以以向向量量AB、AC、AD为为棱棱的的平平行行六六面面体体的的体体积积的的六六分分之之一一.61ADACABV ,121212zzyyxxAB ,131313zzyyxxAC ,141414zzyyxxAD 14141413131312121261zzyyxxzzyyxxzzyy
10、xxV 式中正负号的选择必须和行列式的符号一致式中正负号的选择必须和行列式的符号一致.向量的数量积向量的数量积向量的向量积向量的向量积向量的混合积向量的混合积(结果是一个数量)(结果是一个数量)(结果是一个向量)(结果是一个向量)(结果是一个数量)(结果是一个数量)(注意共线、共面的条件)(注意共线、共面的条件)四、小结四、小结思考题思考题已已知知向向量量0 a,0 b,证证明明2222)(|bababa .思考题解答思考题解答)(sin|,2222bababa )(cos1|,222baba 22|ba )(cos|,222baba 22|ba .)(2ba 一一、 填填空空题题:1 1、
11、已已知知a= =3 3,b= =2 26 6,ba = =7 72 2, ,则则ba = =_ _ _ _ _ _ _ _ _ _;2 2、 已已知知(ba,)= =32 ,且且a= =1 1,b= =2 2,则则 2)(ba = =_ _ _ _ _ _ _ _ _ _ _ _ _ _ _;3 3、ba 的的几几何何意意义义是是以以ba,为为其其邻邻边边的的_ _ _ _ _ _ _ _ _ _;4 4、 三三向向 量量cba,的的 混混 合合 积积 cba 的的 几几 何何 意意 义义 是是_ _ _ _ _ _ _;5 5、 两两向向量量的的的的内内积积为为零零的的充充分分必必要要条条件
12、件是是至至少少其其中中有有 一一个个向向量量为为_ _ _ _ _ _ _ _ _,或或它它们们互互相相 _ _ _ _ _ _ _ _ _;6 6、 两两向向量量的的外外积积为为零零的的充充分分必必要要条条件件是是至至少少其其中中有有一一 个个向向量量为为_ _ _ _ _ _ _ _ _ _ _ _ _,或或它它们们互互相相_ _ _ _ _ _ _;练练 习习 题题7 7、设、设kjia23 ,kjib 2 , , 则则ba = _ = _, ba = _ = _ _ , , ba3)2( = _ = _, , ba2 = _ = _,),cos(ba = = _ _ ;8 8、设、设a
13、= =kji 32, ,kjib3 和和,2jic 则则 bcacba)()( =_ =_ ,_ , )()(cbba _ _ ,_ , cba )( = _ = _ ._ .二二、 已已 知知cba,为为 单单 位位 向向 量量 , 且且 满满 足足0 cba,计计算算accbba . .三三、设设质质量量为为 1 10 00 0 千千克克的的物物体体从从点点)8,1,3(1M沿沿直直线线移移动动到到点点)2,4,1(2M计计算算重重力力所所作作的的功功(长长度度单单位位为为米米,重重力力方方向向为为Z轴轴负负方方向向). .四、四、 设设 4,1,2,2,5,3 ba,问,问 与与怎样的关
14、系怎样的关系能使行能使行zba与与 轴垂直轴垂直 . .五、五、 应用向量证明:应用向量证明:1 1、 三角形的余弦定理;三角形的余弦定理;2 2、 直径所对的圆周角是直角直径所对的圆周角是直角 . .六、六、 已知已知cba,两两垂直,且两两垂直,且 cbascba 求求,3,2,1的长度的长度 与它和与它和cba,的夹角的夹角 . .七、七、 计算以向量计算以向量212eep 和和212eeq 为边的三角为边的三角形的面积,其中形的面积,其中1e和和2e是相互垂直的单位向量是相互垂直的单位向量 . .练习题答案练习题答案一、一、1 1、30 ; 2 2、3 3; 3 3、平行四边形的面积;、平行四边形的面积; 4 4、以、以cba,为邻边的平行六面体的体积;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄冈中学(含黄冈中学实验学校)专项公开招聘教师16人考试题库附答案解析
- 2026陕西省商业学校分学科教师招聘(7人)参考题库及答案1套
- 医疗健康风险评估与预警
- 案场客服服务礼仪培训
- 医学影像学在疾病诊断与治疗中的应用与新技术研究
- 2026年金融风控隐私计算系统项目营销方案
- 医疗设备产业创新驱动与可持续发展
- 2026年智能车载手机支架项目可行性研究报告
- 医疗机构信息化安全与隐私保护策略研究
- 案件风险防控培训课件
- 知识点及2025秋期末测试卷(附答案)-花城版小学音乐五年级上册
- 2025天津中煤进出口有限公司面向中国中煤内部及社会招聘第三批电力人才21人笔试参考题库附带答案详解(3卷合一)
- 噪声监测系统施工方案
- 2025年杭州余杭水务有限公司招聘36人笔试参考题库及答案解析
- 大一军事理论课件全套
- 骨科常见病护理要点
- GB/T 191-2025包装储运图形符号标志
- 2023年巡检员岗位考试真题模拟汇编(共113题)
- 七下长江全能学案
- LZDD-18N 食品安全综合检测仪使用说明书20140530
- JJG 1162-2019医用电子体温计
评论
0/150
提交评论