




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、七年级上册数学全册导学案第一章有理数课题:1.1正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。【重点难点:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具
2、有相反意义的量。请你也举一个具有相反意义量的例子:。(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“一”(读作负)号来表示,如上面的一3、一8、-47o(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。2)正数是大
3、于0的数,负数是的数,0既不是正数也不是负数。【课堂练习:1 .P3第一题到第四题(直接做在课本上)。2 .小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作,-4万元表示。3 .已知下列各数:-1,2-,3.14,+3065,0,-239;54则正数有;负数有。4 .下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数22其中是负数的有 ()A. 2个B. 3个C. 4个D. 5个5 .给出下列各数:-3,0,+5,3-,+3.1,-,2004,+2010;【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于
4、0的数叫做。(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。拓展训练】:1.零下15C,表示为,比OC低4c的温度是。2地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为地,最低处为地3“甲比乙大-3岁”表示的意义是。4如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。课题:1.1正数和负数(2)学习目标】:1 、会用正、负数表示具有相反意义的量;2、通过正、负数学习,培养学生应用数学知识的意识;学习重点】:用正、负数表示具有相反意义的量;学习难点】:实际问题中的数量关系
5、;导学指导】一、知识链接.通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用和来分别表示它们。问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明。参考例子:温度表示中的零上,零下和零度。二.自主探究问题:(课本第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2
6、001年商品进出口总额的增长率;解:(1)这个月小明体重增长,小华体重增长,小强体重增长;2)六个国家2001年商品进出口总额的增长率:美国德国法国英国意大利中国【课堂练习】1.课本第4页练习2、阅读思考(课本第8页)用正负数表示加工允许误差;问题:直径为30.032mm和直径为29.97的零件是否合格?【要点归纳】1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是;2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm加工要求最大不超过标准尺
7、寸多少?最小不小于标准尺寸多少?【总结反思:课题:1.2.1有理数【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点:正确理解有理数的概念【学习难点:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,那么你能写出3个不同类的数吗?.(4名学生板书)二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。问题2:我们是否可以把上述数
8、分为两类?如果可以,应分为哪两类?53师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -,-5,13,0.1,-5.32,-80,123,2.333正分数集合负分数集合【要点归纳:有理数分类正有理数正整数正分数整数有理数零或者有理数负有理数负整数负分数分数正整数负整数正分数负分数【拓展训练】1、下列说法中不正确的是A. -3.14既是负数,分数,也是有理数B. 0既不是正数,也不是负数,但是整数c.-2000既是负数,也是整数,但不是有理数D.O是正数和负数的分界2、在下表适当的
9、空格里画上号有理数整数分数正整数负分数自然数-8是-2.25是3二旦50是【总结反思】:课题:1.2.2数轴【学习目标】:1、掌握数轴概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,利用数轴上的点表示有理数;3、领会数形结合的重要思想方法;【重点难点:数轴的概念与用数轴上的点表示有理数;【导学指导】一、知识链接C;1、观察下面的温度计,读出温度.分别是°C、°C、2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?东汽车站请同学们分小组讨论,交流合作,
10、动手操作二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?引导归纳:1 )、画数轴需要三个条件,即、方向和长度。2)数轴【课堂练习】1、请你画好一条数轴2、利用上面的数轴表示下列有理数1.5,2,2,2.5,2,0;2 33、写出数轴上点A,B,C,D,E所表示的数:EBACDABIJ.I)-!f-3-2-1Q133三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每个数到原点的距离是多少?由此你又有什么发现?3、进一步引导学生完成P9归纳【要点归纳:画数轴需要
11、三个条件是什么?【拓展练习】3 121、在数轴上,表本数-3,2.6,0,4一,2,-1的点中,在原点左边的点有个。5332、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是()A.-5,B.-4C.-3D.-23、你觉得数轴上的点表示数的大小与点的位置有什么关系?【总结反思:课题:1.2.3相反数【学习目标】:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形结合思想;【学习重点:求一个已知数的相反数;【学习难点】:根据相反数的意义化简符号。【导学指导】一、温故知新1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、一2
12、、-5、+2这四个数的点。3、观察上图并填空:数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称。二、自主学习自学课本第10、11的内容并填空:1、相反数的概念像2和一2、5和一5、3和一3这样,只有不同的两个数叫做互为相反数。2、练习1(1)、2.5的相反数是,11和是互为相反数,的相反数是2010;(2)、a和互为相反数,也就是说,一a是的相反数例如a=7时,一a二7,即7的相反数是一7.
13、a=-5时,一a二(5),一(5)”读作"5的相反数”,而一5的相反数是5,所以,一(5)=5你发现了吗,在一个数的前面添上一个“一”号,这个数就成了原数的(3)简化符号:(+0.75)=,(68)=-(-0.5)=,(+3.8)=;(4)、0的相反数是.3、数轴上表示相反数的两个点和原点的距离。【课堂练习】P11第1、2、3题【要点归纳:1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1 .在数轴上标出3,1.5,0各数与它们的相反数。2 .1.6的相反数是,2x的相反数是,a-b的相反数是3 .相反数等于它本身的数是,相反数大于它本身的数是;4 .填空:(1)如果a=
14、-13,那么一a=;(2)如果-a=5.4,那么a=;(3)如果一x=6,那么x=;4 4)x=9,那么x=;5 .数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。课题:1.2.4绝对值【学习目标】:1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法;3、体验运用直观知识解决数学问题的成功;【重点难点:绝对值的概念与两个负数的大小比较【导学指导】一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)单位:米!小明1小红LioLio东-10o1C二
15、、自主探究1、由上问题可以知道,10到原点的距离是,一10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对。这时我们就说10的绝对值是10,10的绝对值也是10;1例如,一3.8的绝对值是3.8;17的绝对值是17;6的绝对值是3一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作Ial。2、练习(1)、式子1-5.7I表示的意义是。(2)、一2的绝对值表示它离开原点的距离是个单位,记作;(3)、I24I=I3.1I=,I1I=,I0I=;33、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。用式子表示就是:1)、当a是正数(
16、即a>0)时,IaI=;2)、当a是负数(即a<0)时,lai=;3)、当a=0时,IaI=;4、随堂练习P12第1、2大题(直接做在课本上)5、阅读思考,发现新知阅读P12问题一P13第12行,你有什么发现吗?在数轴上表示的两个数,右边的数总要左边的数。也就是:1)、正数0,负数0,正数大于负数。2)、两个负数,绝对值大的。【课堂练习】:1、自学例题P13(教师指导)2、比较下列各对数的大小:一3和一5;2.5和一I2.25I【要点归纳:一个正数的绝对值是;一个负数的绝对值是它的0的绝对值是。【拓展练习】1.如果2a2a,则a的取值范围是A.a>OB. a >O2 .
17、 x 7,则 x ; x3 .如果a 3,则a 3 4 .绝对值等于其相反数的数-一定是C. a w od. a v O7 ,则 x .3 a . ( )A .负数 B .正数C.负数或零 D .正数或零5.给出下列说法:互为相反数的两个数绝对值相等;绝对值等于本身的数只有正数;不相等的两个数绝对值不相等;绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【总结反思:课题:1.3.1有理数的加法(1)【学习目标】:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;【学习重点:有理数加法法则【学习难点:异号两
18、数相加【导学指导】一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为4+(2),蓝队的净胜球数为1+(1)。这里用到正数和负数的加法。那么,怎样计算4+(2)下面我们一起借助数轴来讨论有理数的加法。自主探究4米,再向东走2米,两次共向东1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走2)如果规定向东为正,向西为负,那么一个人向西走走了米,这个问题用算式表示就是:
19、2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了米。这个问题用算式表示就是:如图所示:-5-4-2-10123453)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:先向东走3米,再向西走5米,这个人从起点向()走了()米;先向东走5米,再向西走5米,这个人从起点向()走了()米;先向西走5米,再向东走5米,这个人从起点向()走了()米。写出这三种情况运动结果的算式5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了米。写成算
20、式就是2、师生归纳两个有理数相加的几种情况。3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取的符号,并把相加。(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得;3 3)一个数同0相加,仍得。4 .新知应用例1计算(自己动动手吧!)(1) (3)+(9);(2)(4.7)+3.9.例2(自己独立完成)【课堂练习:1 .填空:(口答)(2) 3+ (- 8) = (4) (9) +1 = ;(6) 0+ (3) = (1) (4)+(6)=(4) 7+(-7)=;(5) (6)+0=;2 .课本P18
21、第1、2题【要点归纳:有理数加法法则:【拓展训练:1 .判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。2 .已知|a=8,b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值。课题:1.3.1有理数的加法(2)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算
22、30 +(- 20)=8 +( 5) + ( 4)=( 20) +30=8 + ( 5) + (4)=思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例1计算:1)16+(25)+24+(35)2)(2.48)+(+4.33)+(7.52)+(4.33)例2每袋小麦的标准重量为90千克,10袋小麦称重记录如下
23、:919191.58991.291.388.788.891.891.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下。【课堂练习】课本P20页练习1、2【要点归纳:你会用加法交换律、结合律简化运算了吗?【拓展训练】1 .计算:12511、(1) (7)+11+3+(2);(2)-(-)-(-)(-).436432 .绝对值不大于10的整数有个,它们的和是.3、填空:(1)若a>0,b>0,那么a+b0.(2)若av0,b<0,那么a+b0.(3)若a>0,bv0,且1a>b那么a+b0(4
24、)若av0,b>0,且Ia>b那么a+b03.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?4、课本P20实验与探究【总结反思:课题:1.3.2有理数的减法(1)【学习目标】:1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则;2、会正确进行有理数减法运算;3、体验把减法转化为加法的转化思想;【重点难点:有理数减法法则和运算【导学指导】一、知识链接1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为一154米,两处的高度相差多少呢?试试
25、看,计算的算式应该是.能算出来吗,画草图试试2、长春某天的气温是一2C3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:。C)显然,这天的温差是3-(2);想想看,温差到底是多少呢?那么,3-(-2)=;二、自主探究1、还记得吗,被减数、减数差之间的关系是:被减数一减数=;差+减数=。2、请你与同桌伙伴一起探究、交流:要计算3(2)=?,实际上也就是要求:?+(2)=3,所以这个数(差)应该是;也就是3(2)=5;再看看,3+2=;所以3-(-2)3+2;由上你有什么发现?请写出来.3、换两个式子计算一下,看看上面的结论还成立吗?1(-3)=,1+3=,所以一1一(3)
26、-1+3;0(3)=,0+3=,所以0(3)0+3;4、师生归纳1)法则:2)字母表示:三、新知应用1、例题例1计算:(1)( 3) (5); 7.2 (4.8);请同学们先尝试解决【课堂练习】课本P23 1.2(2)0(4)7;31254;【要点归纳:有理数减法法则:【拓展训练】1、计算:(1) ( 37) ( 47);(2) (53) 16;(3) ( 210) 87;(4) 1.3 ( 2.7 );(5)(-2)-(-1);422.分别求出数轴上下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数一2的点与表示数一3的点;课题:1.3.2有理数的减法(2)【学习目标】:1、理
27、解加减法统一成加法运算的意义;2、会将有理数的加减混合运算转化为有理数的加法运算;【重点难点】:有理数加减法统一成加法运算;【导学指导】一、知识链接1、一架飞机作特技表演,起飞后的高度变化如下表:高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米记作+4.5千米3.2千米+1.11.4千米请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米。2、你是怎么算出来的,方法是二、自主探究1、现在我们来研究(-20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧!2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。3、师生共同归纳:遇到一个式子既
28、有加法,又有减法,第一步应该先把减法转化为.再把加号记在脑子里,省略不写如:(一20)+(+3)(5)(+7)有加法也有减法=(20)+(+3)+(+5)+(7)先把减法转化为加法=-20+3+5-7再把加号记在脑子里,省略不写可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.4、师生完整写出解题过程5、补充例题:计算4.4(4)(+2)+(2)+12.4;5210【课堂练习】计算:(课本P24练习)(1) 14+30.5;(2) -2.4+3.54.6+3.5(3) (7)(+5)+(4)(10);(4)12(6) ( 3) 1;【要点归纳:【拓展训练:245)(一)()(
29、一)(1)1、计算:1)2718+(7)322【总结反思:课题:1.4.1有理数的乘法(1)【学习目标】:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;【重点难点】:有理数乘法法则【导学指导】一、温故知新1 .有理数加法法则内容是什么?2 .计算(1)2+2+2=(2)(-2)+(-2)+(-2)=3 .你能将上面两个算式写成乘法算式吗?二、自主探究1、自学课本28-29页回答下列问题(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?可以表示为.(2)如果它以每分2cm的速度向左爬行,3分钟后它
30、在什么位置?可以表示为(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?可以表示为由上可知:(1) 2X3=;(2)(2)X3=(3) (+2) X ( 3) =(4) ( 2) X ( 3) =(5)两个数相乘,一个数是。时,结果为0观察上面的式子,你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号,异号,并把相乘。任何数与0相乘,都得。2、直接说出下列两数相乘所得积的符号1)5(3);2)(4)X63)(-7)X(9);4)0.9X8;3、请同学们自己完成例1计算:(1)(3)X9;(2
31、)(1)X(-2)2归纳:的两个数互为倒数。【课堂练习】课本30页练习1.2.3(直接做在课本上)【要点归纳:有理数乘法法则:【拓展训练】1 .如果ab>0,a+b>0,确定a、b的正负。*3+12 .对于有理数a、b定义一种运算:a*b=2a-b,计算(-2)课题:1.4.1有理数的乘法(2)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点:多个有理数乘法运算符号的确定;【学习难点:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式
32、的积是正的还是负的?2X3X4X(5),2X3X(-4)X(5),2X(-3)X(-4)X(5),(2)X(3)X(4)X(5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。2、新知应用1、例题3,(P31页)请你思考,多个不是。的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由7.8X(8.1)xOX(19.6)师生小结:【课堂练习】计算:(课本P32练习)(1)、一5X8X(7)X(-0.25);(2)>()-(2);12
33、15235(1)(-)15(I0(1);【要点归纳:1.几个不是0的数相乘,负因数的个数是时,积是正数;时,积是负数。2.几个数相乘,如果其中有一个因数为0,积等于0;负因数的个数是【拓展训练】:、选择1 .若干个不等于0的有理数相乘,积的符号()A.由因数的个数决定 B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定2 .下列运算结果为负值的是(A.(- 7) X (-6)B.(-6)+(-4)C.0X(-2)(-3) D.(-7)-(-15)3 .下列运算错误的是()A.(-2)X(-3)=6B.(6)33) X (- 2) X (-4)=-24C.(-5)X(
34、-2)X(-4)=-40D.(-二、计算:1、1111111-1-1-1-1-1-23456752、1.4.1 课题:有理数的乘法(3)【学习目标】1、熟练有理数的乘法运算并能用乘法运算律简化运算;2、学生通过观察、思考、探究、讨论,主动地进行学习;【学习重点:正确运用运算律,使运算简化【学习难点:运用运算律,使运算简化【导学指导】一、知识链接1、请同学们计算.并比较它们的结果:(1) (6)X5=5X(6)=(2) 3X(4)X(5)=3x(4)X(5)=请以小组为单位,相互检查,看计算对了吗?二、自主探究1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。2、怎么样
35、,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?3、归纳、总结乘法交换律:两个数相乘,交换因数的位置,积。即:ab=乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积即:(ab)c=4、新知应用例题4用两种方法计算(二十)X12;262解法一:解法二:【课堂练习:(课本P33练习)1、(-85)X(-25)X(-4);2、(-7)X15X(11);871)x30;15【要点归纳:【拓展训练:/、11918x 18;1、看谁算得快,算得准(1)(一7)X(-)X;314(3) 9X(11)+12X(9);(4)36;96418【总结反思:课题:1.4.2有理数的除法(
36、1)【学习目标】:1、理解除法是乘法的逆运算;2、理解倒数概念,会求有理数的倒数;3、掌握除法法则,会进行有理数的除法运算;【重点难点:有理数的除法法则【导学指导】一、知识链接1)、小红从家里到学校,每分钟走50米,共走了20分钟。问小红家离学校有米,列出的算式为2)放学时,小红仍然以每分钟50米的速度回家,应该走分钟。列出的算式为从上面这个例子你可以发现,有理数除法与乘法之间的关系是3)写出下列各数的倒数-4的倒数,3的倒数,-2的倒数二、合作交流、探究新知1、小组合作完成比较大小:8+(4)8X(一);4(-15)+3(-15)X1;3(一11)+(-2)(-11)X(-1);442再相互
37、交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得;1 .自学P34例5、例62 .师生共同完成例7【课堂练习】1、练习:P352、练习:P36第1、2题【要点归纳:有理数的除法法则:【拓展训练】1、计算3152(2)0+(-1000);2、练习册P21(-)【总结反思:课题:1.4.2有理数的除法(2)【学习目标】:1、学会用计算器进行有理数的除法运算;2、掌握有理数的混合运算顺序;【学习重点:有理数的混合运算;【学习难点:运算顺序的确定与性质符号的处理;【导学指导
38、】一、知识链接1、计算(-8)+(-4);(2) (-9)+3;(3) (0.1)+1X(100);22.有理数的除法法则:二、自主探究1.例8计算(1) (8) +4+ (-2)(2)(-7)X(-5)90+(-15)你的计算方法是先算法,再算法。有理数加减乘除的混合运算顺序应该是写出解答过程2.自学完成例9(阅读课本P36P37页内容)【课堂练习】1、计算(P36练习)(2) 3X (4) +(28) +7;(1)6-(12)+(3);(3)(48)+8(25)X(6);(4)42(-)(334)(0.25)2.P37练习【要点归纳:【拓展训练】1、选择题(1)下列运算有错误的是()1,1
39、A.-+(-3)=3X(-3)B.(5)5(2)32C.8-(-2)=8+2D.2-7=(+2)+(-7)(2)下列运算正确的是()A.34;B.0-2=-2;C.1;2243D.(-2)+(-4)=2;2、计算、/、11)、186(2)X();2)11+(22)一(一11);【总结反思:课题:1.5.1有理数的乘方(1)【学习目标】:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;【重点难点:有理数乘方的运算。【导学指导】一、知识链接1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛依次每天都吃苦,如果我第一天吃这
40、块面包的一半,第二天再吃剩余面包的一半,前一天剩余面包的一半,这样下去,我就永远不要去要饭了!请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。4、自学例2(教师指导)【课堂练习】完成P42页1,2.【要点归纳:【拓展训练】运算加减乘除乘方运算结果和1、我们已经学习了五种运算,请把下表补充完整:2、用乘方的意义计算下列各式:322(1)24;(2)-3(3)3.计算(1)(2)222-(10)2;(2)413222(0.5)(2)(8);【总结反思:课题:1.5.1有理数的乘方(2)【学习目标】:1、能确定有理数加、减、乘、除、乘方混合运算的顺序;2、会进行有理数的
41、混合运算;3、培养并提高正确迅速的运算能力;【学习重点:运算顺序的确定和性质符号的处理;【学习难点:有理数的混合运算;【导学指导】一、知识链接1、在2+32X(6)这个式子中,存在着种运算。2、请你们以4人一个小组讨论、交流,上面这个式子应该先算、再算、最后算。二、合作探究1、由上可以知道,在有理数的混合运算中,运算顺序是:(1) ;(2)(3)2、P43例题3,请你试练3、师生共同探讨P43例题4【课堂练习】P44练习计算:(1)、(一1)10X2+(2)3+4;31,(2)、(一5)-3X()4;2(3)、1111、3一(一一)53211(4)、(10)4+(4)2(3+32)X2;【要点
42、归纳:有理数的混合运算的运算顺序是:【拓展训练】计算2r25°341、32、23399323【总结反思:课题:1.5.2科学记数法【学习目标】:1 .能将一个有理数用科学记数法表示;2 .已知用科学记数法表示的数,写出原来的数;3 .懂得用科学记数法表示数的好处;【重点难点】:用科学记数法表示较大的数【导学指导】一、知识链接1、根据乘方的意义,填写下表:10的乘方表示的意义运算结结果中的。的果个数10210X101002103104105二、自主学习1.我们知道:光的速度约为:300000000米/秒,地球表面积约为:510000000000000平方米。这些数非常大,写起来表较麻烦
43、,能否用一个比较简单的方法来表示这两个数吗?300000000=5100000000000=定义:把一个大于10的数表示成ax10n的形式(其中an是)叫做科学记数法。2.例5.用科学记数法表示下列各数:(1)1000000=(2)57000000=(3)123000000000=(4)800800=(5) -10000=(6)-12030000=归纳:用科学记数法表示一个n位整数时,10的指数比原来的整数位【课堂练习】1 .课本45页练习1、2题2 .写出下列用科学记数法表示的原数:(1)8.848X103=(2)3.021X102=(3) 3X106=(4)7.5X105=【要点归纳】:【
44、拓展训练】1 .用科学记数法表示下列各数:(1) 465000=(2)1200万=(3) 1000.001=(4)-789=( 5) 308X10、(6)0.7805X1010=【总结反思】课题:1.5.3近似数【学习目标】:1.了解近似数和有效数字的概念,能按要求取近似数和保留有效数字;2.体会近似数的意义及在生活中的应用;【学习重点】:能按要求取近似数和有效数字;【学习难点】:有效数字概念的理解。【导学指导】一、知识链接1 .用科学记数法表示下列各数:(1) 1250000000=;(2)-130000=;(3)-1025000=2.下列用科学记数法表示的数,把原数写在横线上:(1)2.0
45、3105;22)5.8107;二.自主学习1.(1)我们班有名学生,名男生,名女生;(2)一天有小时,一小时有分,一分钟有秒;(3)我的体重约为千克,我的身高约为厘米;(4)我国大约有亿人口.在上题中,第题中的数字是准确的,第题中的数字是与实际接近的。这种只是接近实际数字,但与实际数字还有差别的数被称为近似数。2 .你还能举出生活中的准确数与近似数吗?请将你举的例子写在下面的空白处。3 .近似数与准确数的接近程度,可以用精确度表示(也就是按四舍五入保留小数)。按四舍五入对圆周率取近似数时,有:3 (精确到个位),3.1 (精确到3,或叫精确到十分位),3.14 (精确到,或叫精确到位),3.1
46、42 (精确到,或叫精确到位),3.1416(精确到,或叫精确到位)。4 .例6按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001);(2)304.35(精确到个位);(3)1.804(精确到0.1);(4)1.804(精确到0.01);解:(1)(2)(3)(4)思考:1.8,与1.80的精确度相同吗?在表示近似数时,能将小数点后的0随便去掉吗?从一个数的左边,到止,所有的数字都是这个数的有效数字。【课堂练习】P46练习用四舍五入法对它们取近似数,并写出各近似数数的有效数字(1)0.00356(精确到万分位);(2)61.235(精确到个位);(3)1.89
47、35(精确到0.001);(4)0.0571(精确到0.1);【要点归纳:【拓展训练】1 .按括号内要求,用四舍五入法对下列各数取近似数:(1) 0.00356(精确到0.0001);(2)566.1235(精确到个位);(3) 3.8963 (精确到 0.1 );(4) 0.0571 (精确到千分位);(5) 0.2904 (保留两个有效数字);(6) 0.2904 (保留3个有效数字);(2) (1)0.3649精确到位,有一个有效数字,分别是(2)2.36万精确到位,有一个有效数字,分别是;(3) 5.7X105精确到位,有个有效数字,分别是;【总结反思:课题:第一章有理数复习(两课时)
48、【复习目标】:复习整理有理数有关概念和有理数的运算法则,运算律以及近似计算等有关知识;【复习重点】:有理数概念和有理数的运算;【复习难点:对有理数的运算法则的理解;【导学指导】:一、知识回顾(一)正负数有理数的分类:统称整数,试举例说明。统称分数,试举例说明。统称有理数。(二)数轴规定了、的直线,叫数轴(三)、相反数的概念像2和-2、-5和5、2.5和-2.5这样,只有不同的两个数叫做互为相反数0的相反数是。一般地:若a为任一有理数,则a的相反数为-a相反数的相关性质:1、相反数的几何意义:表示互为相反数的两个点(除。外)分别在原点。的两边,并且到原点的距离相等。2、互为相反数的两个数,和为0
49、。叫做数a的绝对值,记作lai;(四)、绝对值一般地,数轴上表示数a的点与原点的一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是.任一个有理数a的绝对值用式子表示就是:(1)当a是正数(即a>0)时,IaI=;(2)当a是负数(即a<0)时,IaI=;(3)当a=0时,IaI=;【课堂练习】1 .把下列各数填在相应额大括号内:71, -0.1,-789,25,0,-20,-3.14,-590,8正整数集;正有理数集负有理数集;负整数集;自然数集正分数集负分数集2 .如图所示的图形为四位同学画的数轴,其中正确的是()A-H<->C111-*D11'|:34
50、P-1012J-1-2C12-2-10123 .在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。4 ,-|-2|,-4.5,1,04 .下列语句中正确的是()A.数轴上的点只能表示整数B.数轴上的点只能表示分数C.数轴上的点只能表示有理数D.所有有理数都可以用数轴上的点表示出来5 .-5的相反数是;-(-8)的相反数是;-+(-6)=0的相反数是;a的相反数是;6 .若a和b是互为相反数,则a+b=。7 .如果一x=6,那么x=;x=9,那么x=8 .|-8|=;-|-5|=;绝对值等于4的数是9 .如果a3,则a3,3a10 .有理数中,最大的负整数是,最小的正整数是,最大的非正数是【要点归纳】【拓展训练】1 .绝对值等于其相反数的数-一定是()A.负数B.正数C.负数或零D.正数或零2 .已知a、b都是有理数,且|a|二a,|b|=-b、,则ab是()A.负数;B.正数;C.负数或:;D.非负数3 .x7,贝Ux;X7,贝Ux4 .如果2a2a,则a的取值范围是()A.a>Ob.a>OC.awod.avO.5.绝对值不大于11的整数有(A.11个B.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省平凉市崇信县第五批青年就业见习岗位招聘43人笔试模拟试题及答案解析
- 2025秋季大港油田分公司高校毕业生招聘90人笔试参考题库附答案解析
- 2025年妇产科常见妇科疾病诊断治疗模拟考试卷答案及解析
- 2025年小儿神经外科手术护理模拟考试卷答案及解析
- 2025年区域麻醉技术规范操作考核模拟试卷答案及解析
- 2025年产科妇科疾病诊断与治疗模拟考试答案及解析
- 节前油库安全教育培训课件
- 国家能源崇左市2025秋招综合管理类面试追问及参考回答
- 信阳市中石油2025秋招面试半结构化模拟题及答案炼化装置操作岗
- 南通市中石油面试半结构化模拟题30问附高分答案
- 2025年国家能源集团宁夏煤业有限责任公司招聘笔试考试题库+答案
- 中国邮政储蓄银行2026校园招聘考试参考试题及答案解析
- 网络信息安全培训案例分享课件
- 社区获得肺炎护理
- 高压氧舱培训课件
- 锁骨骨折诊疗指南
- 矩阵论简明教程全课件
- 学校学生欺凌治理委员会成员及工作职责、实施方案范文
- 建筑室外围蔽板材(简化)
- GB/T 250-2008纺织品色牢度试验评定变色用灰色样卡
- GB/T 19816.2-2005涂覆涂料前钢材表面处理喷射清理用金属磨料的试验方法第2部分:颗粒尺寸分布的测定
评论
0/150
提交评论