


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1. 逻辑回归模型1.1 逻辑回归模型 考虑具有 p 个独立变量的向量 , 设条件概率 为根据观测 量相对于某事件发生的概率。逻辑回归模型可表示为(1.1)上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。其中 。如果含有名义变量,则将其变为 dummy 变量。 一个具有 k 个取值的名义变量,将变为 k-1 个 dummy 变量。这样,有( 1.2 )定义不发生事件的条件概率为1.3 )那么,事件发生与事件不发生的概率之比为简称为 odds 。因为这个比值称为事件的发生比 (the odds of experiencing an event), 0p0 。对 odds 取对数,即得
2、到线性函数,( 1.5 )1.2 极大似然函数假设有 n 个观测样本, 观测值分别为 设 为给定条件下是,得到 的概率。 在同样条件下得到 的条件概率为 。得到一个观测值的概率为1.6 )因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。1.7 )上式称为 n 个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估计。于是,最大似然估计的关键就是求出参数,使上式取得最大值。对上述函数求对数(1.8)上式称为对数似然函数。为了估计能使 取得最大的参数的值。对此函数求导,得到 p+1 个似然方程。( 1.9 ),j=1,2,.,p.上式称为似然方程。为了解上述非线性方程
3、,应用牛顿拉斐森 进行迭代求解。(Newton-Raphson)方法1.3 牛顿拉斐森迭代法对 求二阶偏导数,即 Hessian矩阵为(1.10(1.10如果写成矩阵形式,以表示 Hessian矩阵,表示1.11 )1.12 )则 。再令 然方程的矩阵形式。( 注:前一个矩阵需转置 ),即似得牛顿迭代法的形式为1.13 )注意到上式中矩阵为对称正定的,求解即为求解线性方程中的矩阵。对进行 cholesky 分解。 最大似然估计的渐近方差( asymptoticvariance )和协方差 (covariance) 可以由信息矩阵( information matrix)的逆矩阵估计出来。 而信
4、息矩阵实际上是 二阶导数的负值,表示为 。估计值的方差和协方差表示为 ,也就是说, 估计值 的方差为矩阵的逆矩阵的对角线上的值,而估计值 和 的协方差为除了对角线以外的值。然而在多数情况,我们将使用估计值 的标准方差,表示为for j=0,1,2, ,p (1.14 ). 显著性检验 下面讨论在逻辑回归模型中自变量 是否与反应变量显著相关的显著性检验。零假设 0(表示自变量 对事件发生可能性无影响作用) 。如果零假设被拒绝, 说明事件发生 可能性依赖于 的变化。2.1 Wald test 对回归系数进行显著性检验时,通常使用 Wald 检验,其公式为2.1 )其中 , 为 的标准误差。这个单变
5、量 Wald 统计量服从自由度等于的 分布。如果需要检验假设 :0, 计算统计量2.2 )其中, 为去掉 所在的行和列的估计值,相应地,为去掉 所在的行和列的标准误差。这里, Wald 统计量服从自由度等于 p 的 分布。如果将上式写成矩阵形式,(2.3 )矩阵是第一列为零的一常数矩阵。例如,如果检验,则Wald然而当回归系数的绝对值很大时,这一系数的估计标准误就会膨胀,于是会导致 统计值变得很小, 以致第二类错误的概率增加。 也就是说, 在实际上会导致应该拒绝零假设 时却未能拒绝。 所以当发现回归系数的绝对值很大时, 就不再用 Wald 统计值来检验零假设, 而应该使用似然比检验来代替。2.
6、2 似然比( Likelihood ratio test )检验在一个模型里面, 含有变量 与不含变量 的对数似然值乘以 -2 的结果之差, 服从 分布。这一检验统计量称为似然比 (likelihood ratio) ,用式子表示为(2.4)计算似然值采用公式( 1.8 )。倘若需要检验假设 :0, 计算统计量( 2.5 )上式中, 表示 0 的观测值的个数,而表示 的观测值的个数,那么 n 就表示所有观测值的个数了。实际上,上式的右端的右半部分 表示 只含有 的似然值。统计量 G 服从自由度为 p 的 分布2.3 Score 检验在零假设 : 0 下,设参数的估计值为 ,即对应的0。计算 S
7、core 统计量的公式为2.6 )上式中, 表示在 0 下的对数似然函数( 1.9 )的一价偏导数值,而 表示 在 0 下的对数似然函数 (1.9 )的二价偏导数值。 Score 统计量服从自由度等于的 分布。2.4 模型拟合信息 模型建立后,考虑和比较模型的拟合程度。有三个度量值可作为拟合的判断根据。(2.7)(2) Akaike 信息准则( Akaike Information Criterion,(1) -2LogLikelihood简写为 AIC )(2.8)其中为模型中自变量的数目, 为反应变量类别总数减, 对于逻辑回归有 S=2-1=1 -2LogL 的值域为 0 至 ,其值越小说
8、明拟合越好。当模型中的参数数量越大时,似然值也 就越大, -2LogL 就变小。因此,将 (K+S) 加到 AIC 公式中以抵销参数数量产生的影响。 在其它条件不变的情况下,较小的 AIC 值表示拟合模型较好。(3)Schwarz 准则这一指标根据自变量数目和观测数量对 -2LogL 值进行另外一种调整。 SC 指标的定义 为(2.9)其中 ln(n) 是观测数量的自然对数。这一指标只能用于比较对同一数据所设的不同模型。在 其它条件相同时,一个模型的 AIC 或 SC 值越小说明模型拟合越好。3. 回归系数解释3.1 发生比odds=p/(1-p),即事件发生的概率与不发生的概率之比。而发生比
9、率 (odds ration),(1) 连续自变量。对于自变量 ,每增加一个单位, odds ration 为(3.1)(2) 二分类自变量的发生比率。变量的取值只能为 0或1,称为 dummy variable 。当 取 值为 1,对于取值为 0的发生比率为(3.2)亦即对应系数的幂。(3) 分类自变量的发生比率。如果一个分类变量包括 m 个类别,需要建立的 dummy variable的个数为 m-1, 所省略的那个类别称作参照类 (reference category) 。设 dummy variable 为 ,其系数为 , 对于参照类,其发生比率为 。3.2 逻辑回归系数的置信区间对于
10、置信度 - ,参数 的100% ( - )的置信区间为( 3.3 )上式中, 为与正态曲线下的临界值( critical value ) ,为系数估计 的标准误差, 和 两值便分别是置信区间的下限和上限。当样本 较大时, 0.05 水平的系数 的 95% 置信区间为( 3.4 )4. 变量选择4.1 前向选择( forward selection):在截距模型的基础上,将符合所定显著水平的自变量一次一个地加入模型。具体选择程序如下(1 ) 常数(即截距)进入模型。(2) 根据公式( 2.6 )计算待进入模型变量的 Score 检验值,并得到相应的 P 值。(3 ) 找出最小的 p 值,如果此
11、p 值小于显著性水平,则此变量进入模型。如果此变量是某个名义变量的单面化 (dummy) 变量,则此名义变量的其它单面化变理同时也进入模 型。不然,表明没有变量可被选入模型。选择过程终止。4) 回到 (2) 继续下一次选择。4.2 后向选择( backward selection ):在模型包括所有候选变量的基础上,将不符合保 留要求显著水平的自变量一次一个地删除。具体选择程序如下(1) 所有变量进入模型。(2) 根据公式( 2.1 )计算所有变量的 Wald 检验值,并得到相应的 p 值。(3) 找出其中最大的 p 值,如果此 P 值大于显著性水平 ,则此变量被剔除。对于某个 名义变量的单面
12、化变量,其最小 p 值大于显著性水平 ,则此名义变量的其它单面化变 量也被删除。不然,表明没有变量可被剔除,选择过程终止。(4) 回到 (2) 进行下一轮剔除。4.3 逐步回归 (stepwise selection)(1) 基本思想:逐个引入自变量。每次引入对影响最显著的自变量,并对方程中的老变量 逐个进行检验, 把变为不显著的变量逐个从方程中剔除掉, 最终得到的方程中既不漏掉对 影响显著的变量,又不包含对影响不显著的变量。(2) 筛选的步骤:首先给出引入变量的显著性水平 和剔除变量的显著性水平 ,然后 按下图筛选变量。(3) 逐步筛选法的基本步骤 逐步筛选变量的过程主要包括两个基本步骤:
13、一是从不在方程中的变量考虑引入新变量的步 骤;二是从回归方程中考虑剔除不显著变量的步骤。假设有 p 个需要考虑引入回归方程的自变量 . 设仅有截距项的最大似然估计值为 。对 p 个自变量每个分别计算 Score 检验值,设有最小 p 值的变量为 ,且有 ,对于单面化 (dummy) 变量,也如此。若 ,则此变量进入模型, 不然停止。 如果此变量是名义变量单面化 (dummy) 的变 量,则此名义变量的其它单面化变量也进入模型。其中 为引入变量的显著性水平。 为了确定当变量 在模型中时其它 p-1 个变量也是否重要, 将 分 别与 进行拟合。对 p-1 个变量分别计算 Score 检验值,其 p 值设为 。设有最小 p 值 的变量为 ,且有. 若,则进入下一步,不然停止。对于单面化变量,其方式如同上步。 此步开始于模型中已含有变量 与 。注意到有可能在变量 被引入后, 变量 不 再重要。本步包括向后删除。 根据(2.1) 计算变量 与 的 Wald 检验值,和相应的 p 值。 设 为具有最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲状腺超声测值课件
- jit教学能力大赛课件
- 新解读《GB-T 36786-2018病媒生物综合管理技术规范 医院》
- 中班数物对应教学课件
- 党史故事课件教学对象
- 用电安全知识培训课件报告
- 用火安全知识培训内容课件
- 生物实验室安全知识培训课件
- 生物安全知识培训课件解答题
- 2024景德镇住房出租合同(30篇)
- 办公自动化使用教材课件
- 2025年佛山转业士官考试题库
- 2025年专业士官考试题库
- 院前急救技能大赛
- 2025年事业单位工勤技能-安徽-安徽水土保持工五级(初级工)历年参考题库含答案解析(5卷套题【单选100题】)
- 2024年武汉广播电视台专项招聘真题
- 高血压尿毒症护理查房
- 2025届山东省青岛五十八中高一物理第二学期期末考试试题含解析
- 智能建筑中机器人的应用与装配式施工技术
- 支架术后护理常规课件
- 妇产科子宫脱垂护理查房
评论
0/150
提交评论