扫描隧道显微镜(STM_第1页
扫描隧道显微镜(STM_第2页
扫描隧道显微镜(STM_第3页
扫描隧道显微镜(STM_第4页
扫描隧道显微镜(STM_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、扫描隧道显微镜(STM 扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。隧道电流 I 是电子波函数重叠的量度,与针尖和样品之间距离 S 和平均功函数 有关: Vb 是加在针尖和样品之间的偏置电压,平均功函数 , 分别为针尖和样品的功函数,A 为常数,在真空条件下约 等于1。扫描探针一般采用直径小于1mm的细金属丝,如钨丝、铂铱丝等;被观测样品应具有一定导电性才可以产生隧道电流 由上式可知,隧道电流强度

2、对针尖与样品表面之间距非常敏感,如果距离 S 减小0.1nm,隧道电流 I 将增加一个数量级,因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏,见图1(a)。 将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面态密度的分布或原子排列的图象。这种扫描方式可用于观察表面形貌起伏较大的样品,且可通过加在 z 向驱动器上的电压值推算表面起伏高度的数值,这是一种常用的扫描模式。对于起伏不大的样品表面,可以控制针尖高度守恒扫描,通过记录隧道电流的变化亦可得到表面态度的分布。这种扫描方

3、式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,但一般不能用于观察表面起伏大于1nm的样品。 图图1扫描模式示意图扫描模式示意图(a)恒电流模式;(b)恒高度模式S 为针尖与样品间距,I、Vb 为隧道电流和偏置电压,Vz为控制针尖在 z 方向高度的反馈电压。(a)(b) 从式可知,在Vb和 I 保持不变的扫描过程中,如果功函数随样品表面的位置而异,也同样会引起探针与样品表面间距 S 的变化,因而也引起控制针尖高度的电压Vz的变化。 如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时扫描隧道显微镜(STM)给出的等电子态密

4、度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。 扫描隧道显微镜(STM)不能区分这两个因素,但用扫描隧道谱(STS)方法却能区分。利用表面功函数、偏置电压与隧道电流之间的关系,可以得到表面电子态和化学特性的有关信息。 如前所述,扫描隧道显微镜(STM)仪器本身具有的诸多优点,使它在研究物质表面结构、生物样品及微电子技术等领域中成为很有效的实验工具。例如生物学家们研究单个的蛋白质分子或DNA分子;材料学家们考察晶体中原子尺度上的缺陷;微电子器件工程师们设计厚度仅为几十个原子的电路图等,都可利用扫描隧道显微镜(STM)仪器。 有严重缺陷的高分子镀膜 在

5、扫描隧道显微镜(STM)问世之前,这些微观世界还只能用一些烦琐的、往往是破坏性的方法来进行观测。而扫描隧道显微镜(STM)则是对样品表面进行无损探测,避免了使样品发生变化,也无需使样品受破坏性的高能辐射作用。 另外,任何借助透镜来对光或其它辐射进行聚焦的显微镜都不可避免的受到一条根本限制:光的衍射现象。由于光的衍射,尺寸小于光波长一半的细节在显微镜下将变得模糊。而扫描隧道显微镜(STM)则能够轻而易举地克服这种限制,因而可获得原子级的高分辨率瑞士苏黎世研究实验室的宾尼格(GBinnig)和罗赫(HRohrer)发明的扫描隧道显微镜(简称STM),在技术上实现了对单个原子的控制与操作。为此,他们

6、与显微镜发明人鲁斯卡分享了1986年诺贝尔物理学奖。扫描隧道显微镜下原子的镜象 从扫描隧道显微镜(STM)的工作原理可知,在扫描隧道显微镜(STM)观测样品表面的过程中,扫描探针的结构所起的作用是很重要的。如针尖的曲率半径是影响横向分辨率的关键因素;针尖的尺寸、形状及化学同一性不仅影响到STM图象的分辨率,而且还关系到电子结构的测量。因此,精确地观测描述针尖的几何形状与电子特性对于实验质量的评估有重要的参考价值 。 扫描隧道显微镜(STM)在化学中的应用研究虽然只进行了几年,但涉及的范围已极为广泛。因为扫描隧道显微镜(STM)的最早期研究工作是在超高真空中进行的,因此最直接的化学应用是观察和记

7、录超高真空条件下金属原子在固体表面的吸附结构 在有机分子结构的研究中,高分辨率的扫描隧道显微镜(STM)三维直观图象是一种极为有用的工具。此法已成功地观察到苯在Rh(111)表面的单层吸附,并显示清晰的Kekule环状结构。在生物学领域,扫描隧道显微镜(STM)已用来直接观察DNA、重组DNA及HPI-蛋白质等在载体表面吸附后的外形结构。 Cu-TBPP分子在分子在Cu(100)面上(面上(a和和b),),Ag(110)面上(面上(c和和d)的)的STM图像与示意图图像与示意图 STM的局限性与发展的局限性与发展1 .在扫描隧道显微镜(STM)的恒电流工作模式下,有时它对样品表面微粒之间的某些

8、沟槽不能够准确探测,与此相关的分辨率较差。图2摘自对铂超细粉末的一个研究实例6。它形象地显示了扫描隧道显微镜(STM)在这种探测方式上的缺陷。铂粒子之间的沟槽被探针扫描过的曲面所盖,在形貌图上表现得很窄,而铂粒子的粒径却因此而被增大了。在TEM的观测中则不会出现这种问题。 可以预测,对于许多溶液相的化学反应机理研究,如能移置到载体表面进行,扫描隧道显微镜(STM)也不失为一个可以尝试的测试手段,通过它可观察到原子间转移的直接过程。对于膜表面的吸附和渗透过程,扫描隧道显微镜(STM)方法可能描绘出较为详细的机理。这一方法在操作上和理解上简单直观,获得数据后无需作任何繁琐的后续数据处理就可直接显示或绘图,而且适用于很多介质,因此将会在其应用研究领域展现出广阔的前景。 图图2STM恒电流工作方式观测超细金属微粒(恒电流工作方式观测超细金属微粒(Pt/C样品)样品) 在恒高度工作方式下,从原理上这种局限性会有所改善。但只有采用非常尖锐的探针,其针尖半径应远小于粒子之间的距离,才能避免这种缺陷。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论