下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上平面向量与三角形“四心”的应用问题三角形的外心,内心,重心及垂心,在高考中的考查是比较棘手的问题,先课程教材中所加的内容,更加引起我们的重视,尤其与平面向量结合在一起,那就更加难于掌握了。本文拟对与三角形的“四心”相关的平面向量问题加以归纳,供学习时参考1 课本原题例、已知向量满足条件,求证:是正三角形分析对于本题中的条件,容易想到,点是的外心,而另一个条件表明,点是的重心故本题可描述为,若存在一个点既是三角形的重心也是外心,则该三角形一定是正三角形在1951年高考中有一道考题,原题是:若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?与本题实质是相同的 显然
2、,本题中的条件可改为2 高考原题例、O是平面上一 定点,A、B、C是平面上不共线的三个点,动点P满足 则P的轨迹一定通过ABC的( )A外心B内心C重心D垂心分析已知等式即,设,显然都是单位向量,以二者为邻边构造平行四边形,则结果为菱形,故为的平分线,选例、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = 分析:本题除了利用特殊三角形求解外,纯粹利用向量知识推导则比较复杂,更加重要的一点是缺乏几何直观解法如下,由已知,有向量等式,将其中的向量分解,向已知等式形式靠拢,有,将已知代入,有,即,由是外心,得,由于是任意三角形,则不恒为,故只有恒成立或者,过点作与,则是的中点,有;是垂心,则
3、,故与共线,设,则,又,故可得,有,得根据已知式子中的部分,很容易想到三角形的重心坐标公式,设三角形的重心为,是平面内任一点,均有,由题意,题目显然叙述的是一个一般的结论,先作图使问题直观化,如图,由图上观察,很容易猜想到,至少有两个产生猜想的诱因,其一是,均与三角形的边垂直,则;其二,点是三角形的中线的三等分点此时,会先猜想,但现在缺少一个关键的条件,即,这样由两个三角形的两边长对应成比例,同时,夹角对应相等可得相似当然,在考试时,只需大胆使用,也可利用平面几何知识进行证明本题结论是关于三角形的欧拉定理,即设O、G、H分别是ABC的外心、重心和垂心,则O、G、H三点共线,且OGGH12,利用向量表示就是例、点O是三角形ABC所在平面内的一点,满足,则点O是的()A三个内角的角平分线的交点B三条边的垂直平分线的交点C三条中线的交点D三条高的交点分析移项后不难得出,点O是的垂心,选3 推广应用题例在内求一点,使最小分析如图,构造向量解决取为基向量,设,有于是,当时,最小,此时,即,则点为的重心例已知为所在平面内一点,满足,则为的心分析将,也类似展开代入,已知等式与例的条件一样也可移项后,分解因式合并化简,为垂心例已知为的外心,求证:分析构造坐标系证明如图,以为坐标原点,在轴的正半轴,在轴的上方,直线的方程是,由于点与点必在直线的同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年上海市浦东新区人民医院招聘备考题库及答案详解1套
- 2026年北京北航天宇长鹰无人机科技有限公司招聘备考题库及完整答案详解1套
- 2026年山东师范大学公开招聘人员7人备考题库及答案详解1套
- 2026年国电投(天津)电力有限公司招聘备考题库及一套参考答案详解
- 2026年南开医院收费员外包岗位(北方辅医外包项目)招聘备考题库及一套参考答案详解
- 2026年安徽安东捷氪玻璃科技有限公司招聘备考题库及1套完整答案详解
- 2026年中电云脑(天津)科技有限公司招聘备考题库有答案详解
- 企业机械内控制度
- 汇丰银行内控制度
- 出入境收费内控制度
- 船舶协议装运合同
- 新年活动策划团建方案(3篇)
- 漫画委托创作协议书
- 人教版(PEP)四年级上学期英语期末卷(含答案)
- 员工代收工资协议书
- 协会捐赠协议书范本
- 人员转签实施方案
- C强制认证培训资料课件
- 2025秋南方新课堂金牌学案中国历史七年级上册(配人教版)(教师用书)
- 高中数学建模竞赛试题及答案
- 体育场所知识培训内容课件
评论
0/150
提交评论