




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、锁具装箱问题的数学模型詹国武1 黄景文1 周辉莉2(1.05级化工系; 2.05级经济系)摘要:本文针对锁具如何装箱问题,建立了一个新模型,并对其进行了分析和评价。就如何装箱问题,本文建立了一个如何对每一批锁具进行装箱和标记才能是消费者的满意度最高的模型,再具体分析实际销售情况,建立了在消费量不同情况下,如何组合已装箱好的锁具才能使满意度最大的模型以及,再对此模型进一步探讨和分析,得到一个当销售箱数超过49箱仅仅用同奇或者同偶类的锁具来组合的模型,并且对其进行了论证,最终得到最优的结果利用软件通过筛法,分别求得一批锁具钥匙的槽高由3个,4个,5个不同数组成的个数为2544,2808,528,一
2、批锁具的个数和箱数5880和98。再根据能够互开的锁具的条件,且根据槽高为连续的整数特性,得到结论:当一个钥匙的槽高之和为奇(偶)时,他的互开钥匙的槽高和必为偶(奇),即槽高和同为奇(偶)的必不能互开,得到把奇偶分开装箱和标记的一个初步方案,为了定量的分析不同的方案,利用概率论的方法,引入了平均互开对的概念。对于随后的销售方案,我们利用图论知识,从最小匹配数入手,通过对平均互开对数的大小比较来衡量各个方案和组合的最优情况,得到如下结论,当销售不超过49箱时,只销售槽高和为奇(偶)的,当超过49箱时则按下问所论述的搭配方案,再进一步打破陈规,当按下文的装箱和标记,仅仅销售奇(偶),能够使抱怨的程
3、度更小。关键词:筛法 奇偶分箱 同奇或同偶销售 平均对开数 顾客抱怨度 最小匹配一问题的重述某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从1,2,3,4,5,66个数中任意的取一数,但对于每个钥匙的5个槽高的取值需要满足以下两个条件1至少有3个不同的数2相邻的两槽的高度差不能为5满足以上两个条件的所有不同的锁具称为一批,销售部门随意的取60个装一箱出售同一批锁可以互开的条件:1. 二者相对应的5个槽的高度中有4个相同2. 另一个槽的高度相差为1由于销售部门随意的取60个装一箱,所以同一消费者可能买到互开的锁具,导致了消费者的不满。我们的问题如下:1每一批锁具有多少个,能装多少箱?
4、2求下面三个事件的概率:(1)槽的高度由5个不同数字组成;(2)槽的高度由4个不同数字组成;(3)槽的高度由3个不同数字组成。3.销售部门如何制定一个方案,包括如何装箱(仍旧是60个锁具装一箱),如何给箱子以标记,出售时如何利用这些标志,是团体顾客不再抱怨或者减少抱怨。二问题的分析本题目是要求求出一批锁具的个数和装箱数,以及槽的高度由5个,4个,3个不同数字组成的概率,由于这个问题的数据量比较小,对于这个可以用mathematic和matlab处理软件利用筛法,直接求出,。 我们从奇偶性出发,利用奇偶分类的思想和图论的最小匹配知识,寻找各个锁具的最小匹配数,发现在大于49箱时,奇类和偶类的匹配
5、数都一样,从这里入手,我们建立了自己的模型。 同时,团体购买的消费者对产品的抱怨来自于锁之间的互开程度。于是,我们引入互开数的概念,通过互开率来进行对费者抱怨度的分析,来评价每个模型。三模型假设1可以生产槽高精确的锁具2生产过程中可以对每个槽高进行控制,即按所安排的不同锁具排列顺序生产并且可以更改设置3能够以上锁具互开条件的一定能够互开4.互开对的百分比与顾客不不满意度成正比,在这里不妨设其相等四符号及概念的说明:一批锁具中槽的高度由5个不同的数字组成的锁具个数.:一批锁具中槽的高度由4个不同的数组成的锁具个数:一批锁具中槽的高度由3个不同的数组成的锁具个数N:一批锁具的总个数M:一批锁具的箱
6、数P5:/NP4:/NP3:/N:第i个槽的高度H:5个槽高的和No:一批锁具中H为奇数的个数Ne:一批锁具中H为偶数的个数:一批锁具中H为奇数的装箱数:一批锁具中H为偶数的装箱数互开对:能够互开的锁具的对数五模型的建立与求解1对本题题目中问题的求解 利用mathematic和matlab求得:总数:N=5880M=98=528=2808=2544从而求得:P5=528÷5880=89.8P4=2808÷5880=477.6P3=2544÷5880=432.62装箱方案(1)对问题进行具体的分析,找到途径 对于本题目所给的数据进行分析,槽的高度选择为一连续整数列,
7、想到某个钥匙的H 为一奇数(偶数)时,则其互开钥匙的H必为大1或小1的偶数(奇数),这样我们把H为奇数的分成一个集合O,H为偶数的分为一个集合E,这样,同属于O(E)的之间则一定不能互开,当在奇数集O中任意加入一个H为偶数的keyl形成新的集合,因为keyl 在O中一定有与其互开的锁,所以元素之间不再为必不互开了,所以奇数集合O(或偶数集合E)即为任意两个元素之间必不互开的最大集合。这里通过把锁局具进行分类成为O和E,然后分开装箱和分开销售,就可以尽量的避免互开的现象。(2)对H为奇数和偶数的锁具个数的求解设为任一符合规格的锁具的槽高排列令 :在O中锁具S=,与它互补的一锁具为因为:
8、=35 且假设:为奇数所以: 为偶数又因为:且所以有:且得出任一O中所对应的互补锁具都符合要求:所以有: No Ne同理可得: Ne No最终得到结果: Ne= No=5880/2=2940(此结论也同时用mathematic和matlab 进行了验证)所以:=98/2=49(3).装箱和标记 为了将H为奇数的和H为偶数的区分开,应用不同的标记来表示箱子如标上“奇”,“偶”不同字样,为了让区别更叫明显也可以对装不同奇偶性锁具的箱子用不同的颜色制成,为了使单个锁也能区分其奇偶性,可以把标记做在锁具上,这样即使箱子损坏或没有箱子时也能区分其奇偶性,当销售不超过49箱时,只销售或中的锁具则可实现锁具
9、不能互开的要求,但这里要求出售的是同一批的产品,当锁具有囤积的时候就难以区分是否是同一批,所以每一批也应该明显的标志出生产批号.3. 对以上模型的优化由于在实际销售过程中往往可能大于49箱,当超过49箱后我们应该怎样组合才能使互开的几率更小呢对同一批所生产的锁具进行两两对比,看是否能够互开,得到能够互开的对数.此目的可以用mathematica和matlab来实现,得到的结果为:U=22778(对)则平均每个锁具能组成的互开的对数:=22778/(5880/2)=7.75(对)A.对于随机装箱的分析在一箱中,对于任一锁具S,与其成互开对的平均个数为: =0.078(个) 整箱所对应的互开对为:
10、 =2.33(对) 利用上面的模型推广到更为普遍的k箱则有: = =上面的公式对k都适用B.对奇偶分开装箱的分析当购买量不超过49箱时,不会出现互开的情况,这时()=0.当购买超过49箱时,则先从奇(偶)类中抽出49箱,再从偶(奇)类中抽出k-49箱,在前面的49箱和后面的k-49箱的锁之间才能构成互开关系,所以有k箱锁具中的平均互开对数为: =7.75×60×( k-49)=465k-22785得到在互开次数的分段函数: C.对此模型的改进: 由于不同的锁具其互开对数时不一样的,(比如对于每个偶类的锁,他们能在奇类的锁中找到的互开的锁的数量是不相同的),我们当然希望能够将
11、偶(奇)类的锁具按照它们能够在奇(偶)类的锁中找到互开的锁的多少进行分类,在卖完一类49箱后,先将另一类中有互开次数少的先卖,在卖有互开次数多的锁,所以得到方案。这里用mathmatic处理得到各个锁具互开对数以下结果有4个互开对数的共有45个,其分别是:1,1,1,2,3,1,1,1,3,2,1,1,1,5,4,1,1,1,5,6,1,1,2,1,3,1,1,2,3,1,1,1,3,1,2,1,1,3,2,1,1,1,4,1,5,1,1,4,5,1,1,1,5,1,4,1,1,5,4,1,1,2,1,1,3,1,2,1,3,1,1,2,3,1,1,1,3,1,1,2,1,3,1,2,1,1,
12、3,2,1,1,1,4,1,1,5,1,4,1,5,1,1,4,5,1,1,1,5,1,1,4,1,5,1,4,1,1,5,1,5,6,1,5,4,1,1,1,5,6,5,1,2,1,1,1,3,2,1,1,3,1,2,1,3,1,1,2,3,1,1,1,3,1,1,1,2,3,1,1,2,1,3,1,2,1,1,3,2,1,1,1,4,1,1,1,5,4,1,1,5,1,4,1,5,1,1,4,5,1,1,1,5,1,1,1,4,5,1,1,4,1,5,1,1,5,6,5,1,4,1,1,6,5,1,1,1,6,5,1,1,5,6,5,1,5,1有5个互开对数的共有105个,其分别为:1,1
13、,1,3,4,1,1,1,4,3,1,1,1,4,5,1,1,1,5,2,1,1,2,1,5,1,1,2,5,1,1,1,2,6,2,1,1,2,6,6,1,1,3,1,4,1,1,3,4,1,1,1,4,1,3,1,1,4,3,1,1,1,5,1,2,1,1,5,2,1,1,1,5,5,6,1,1,5,6,5,1,2,1,1,5,1,2,1,5,1,1,2,5,1,1,1,2,5,1,5,1,2,6,2,1,1,3,1,1,4,1,3,1,4,1,1,3,4,1,1,1,4,1,1,3,1,4,1,3,1,1,4,3,1,1,1,4,5,1,5,1,5,1,1,2,1,5,1,2,1,1,5
14、,1,5,2,1,5,1,5,4,1,5,2,1,1,1,5,2,1,5,1,5,2,5,1,1,5,4,1,5,1,5,4,5,1,1,5,5,1,2,1,5,5,1,4,1,5,6,6,6,2,1,1,1,5,2,1,1,5,1,2,1,5,1,1,2,1,5,1,5,2,1,5,5,1,2,5,1,1,1,2,5,1,1,5,2,5,1,5,1,2,5,1,5,5,2,5,5,1,5,2,6,2,1,1,3,1,1,1,4,3,1,1,4,1,3,1,4,1,1,3,4,1,1,1,4,1,1,1,3,4,1,1,3,1,4,1,3,1,1,4,1,5,1,5,4,1,5,5,1,4,3
15、,1,1,1,4,5,1,1,5,4,5,1,5,1,5,1,1,1,2,5,1,1,2,1,5,1,1,5,2,5,1,1,5,4,5,1,2,1,1,5,1,2,1,5,5,1,2,5,1,5,1,4,1,5,5,1,4,5,1,5,1,5,1,2,5,1,5,1,4,5,1,5,2,1,5,1,5,2,5,5,1,5,4,1,5,1,5,5,2,5,1,5,5,6,5,1,5,6,5,5,2,5,1,5,5,4,1,1,1,5,5,1,5,2,5,5,1,5,6,5,6,5,1,1,5,6,5,1,5,6,5,1,5,5,6,5,5,1,1,6,5,5,1,5,6,6,2,1,1,6,6
16、,6,5,1,1,5,2,6,2,1,5,2,6,6,1,5,6,2,6,1,5,6,6,2,2,6,2,1,5,2,6,2,5,1,2,6,6,5,1,5,1,2,6,2,5,1,2,6,6,6,2,1,5,6,6,2,6,5,1,6,5,1,2,6,6,6,2,1,5,6,6,2,5,1有6个互开对数的有296个(在这里就不详尽列出来,可考察附录);有7个互开对数的有699个(在这里就不详尽列出来,可考察附录);有8个互开对数的有901个(在这里就不详尽列出来,可考察附录);有9个互开对数的有744个(在这里就不详尽列出来,可考察附录);有10个互开对数的有105个(在这里就不详尽列出来,
17、可考察附录);从这里可以看出,我们可以任意选择奇(偶)作为前面的49箱(本题选择了奇),对此奇(偶)类的生产可以不必加以排序,随即生产即可,但若要能够使后面的匹配得以实现,则不仅仅要区别出奇偶性,还要区别产品的生产顺序号,在这里之所以列出每个锁具对应的槽高数列,是为了方便安排生产,使生产按照互开对数增加的序列方向进行,然后从有互开次数少的锁开始装箱,比如将45个有4个互开次数的锁和15个有5个互开次数的锁装一箱,要把有5个互开次数的锁放箱子底边,表示有4个互开次数的锁先卖,依此类推。如果生产过程服从上面所得的数据的排列顺序则可以很明确的知道何时生产何等级的锁具,然后对不同等级的锁具箱子或直接锁
18、具上做好明确的标记,使搭配可以顺利准确的进行所以得到这种方法的互开次数,如下的分段函数:D.消费量超过49箱时,多出的用同奇偶性的锁具补充的模型由于同为奇(偶)类的锁具,它们能够互开的条件是:必须是相同的锁当k<=49时, =0当49<k<=98时,由于在原有的49箱中,每个奇(偶)的模型都有了,所以每增加一个锁具,则其互开对数增加一个,得到=60(k-49)联合上面的,得到: 为了更直观的比较四种方案,用mathematic画出了以上四种模型互开次数与箱数函数其中:f1为随机装箱的互开对数与箱数函数; f2为奇偶分开装箱互开对数与箱数函数; f3为奇偶分开装箱又按具有互开对
19、数多少分类的互开对数与箱数函数; f4为都卖同一类锁(奇或偶)互开对数与箱数函数。 由上可以看出用第四中方案所产生的互开对数会比较少,而顾客买同样的多的锁产生的互开次数越多顾客的不满意度会增加。所以当同一客户买的锁不超过98箱时,以第四中方案卖锁最好。这里我们只稍微对其做下简单的解释:对于奇偶交叉卖:同一客户,当买完49箱奇(或偶)时,每卖一个偶(或奇)的锁是都会加至少4个互开对数;而对与只卖奇(或偶)型的锁时,当卖完49箱时,每多卖一个奇(或偶)型锁都只加一个互开对数,所以这个方案来的比较优。当同一客户买的所超过98箱的情况,同理我们可推出当客户买的锁大于98时,买同一种类型的锁会来的好。六
20、.模型的评价与改进1.我们所研究的是针对一个客户的策略,本模型对于这个有较优的适用性,具有一定的实际意义和参考性。2.在我们的模型假设中我们认为顾客的抱怨度和互开对百分比相等,但是当模型的基数极大的时候,无疑这个假设是有一定误差的。这个是值得进一步改进并加以推广的。3模型在不忽略整体的情况下,从个体出发进行分析,避免了陷入整体情况的讨论。同时又能反映整体情况。七.参考文献1 全国大学生数学建模竞赛委员会,全国大学生数学建模竞赛优秀论文汇编,北京:中国物价出版社,20022 王树禾,图论,北京:科学出版社,20043 朱道元,数学建模案例精选,北京:科学出版社,2003八、附录以下部分是本模型主
21、要代码:Clear"Global*"a=Tablei,j,k,l,m,i,1,6,j,1,6,k,1,6,l,1,6,m,1,6;b=Flattena,4;p1=LengthUnion#13&p2=LengthUnion#14&p3=LengthUnion#15&Tableci=0,i,1,3;c1=Selectb,p1;c2=Selectb,p2;c3=Selectb,p3;Fori=1,i£3,i+,di=DeleteCasesDeleteCasesci,_,1,6,_,_,6,1,_;n1=Lengthd1n2=Lengthd2n3=
22、Lengthd3n=n1+n2+n3m=n/60g=Joind1,d2,d3 2544 2808 528 5880 98由于5880种锁,数据太大,这里就不不输出,有意者可以将上面程序在mathematica中运行。(*o,e分别为奇数和偶数锁具*) o=Selectg,OddQPlus#&e=Selectg,EvenQPlus#&LengthoLengthe 2940 2940这里也没给出o和e,有意者可运行上面程序。 (*t为锁的可以互开数,我们叫为匹配数*) t=0;Fori=1,i£5880,i+,Forj=1,j£5880,j+,IfSortgi-
23、gj0,0,0,0,1,t+;t 22778 Tablewi=0,i,1,2940;Fori=1,i£2940,i+,Forj=1,j£2940,j+,IfSortAbsoj-ei0,0,0,0,1,wi+;s=Tablewi,i,1,2940;Tablepi=Positions,i,i,4,10;Fori=4,i£10,i+,ui=Extracte,pi;Print"有",i,"个匹配数,总共",Lengthpi,".如下:"Printui 有 4 个匹配数,总共 45 .如下: 1,1,1,2,3,1
24、,1,1,3,2,1,1,1,5,4,1,1,1,5,6,1,1,2,1,3,1,1,2,3,1,1,1,3,1,2,1,1,3,2,1,1,1,4,1,5,1,1,4,5,1,1,1,5,1,4,1,1,5,4,1,1,2,1,1,3,1,2,1,3,1,1,2,3,1,1,1,3,1,1,2,1,3,1,2,1,1,3,2,1,1,1,4,1,1,5,1,4,1,5,1,1,4,5,1,1,1,5,1,1,4,1,5,1,4,1,1,5,1,5,6,1,5,4,1,1,1,5,6,5,1,2,1,1,1,3,2,1,1,3,1,2,1,3,1,1,2,3,1,1,1,3,1,1,1,2,3
25、,1,1,2,1,3,1,2,1,1,3,2,1,1,1,4,1,1,1,5,4,1,1,5,1,4,1,5,1,1,4,5,1,1,1,5,1,1,1,4,5,1,1,4,1,5,1,1,5,6,5,1,4,1,1,6,5,1,1,1,6,5,1,1,5,6,5,1,5,1 有 5 个匹配数,总共 105 .如下: 1,1,1,3,4,1,1,1,4,3,1,1,1,4,5,1,1,1,5,2,1,1,2,1,5,1,1,2,5,1,1,1,2,6,2,1,1,2,6,6,1,1,3,1,4,1,1,3,4,1,1,1,4,1,3,1,1,4,3,1,1,1,5,1,2,1,1,5,2,1,
26、1,1,5,5,6,1,1,5,6,5,1,2,1,1,5,1,2,1,5,1,1,2,5,1,1,1,2,5,1,5,1,2,6,2,1,1,3,1,1,4,1,3,1,4,1,1,3,4,1,1,1,4,1,1,3,1,4,1,3,1,1,4,3,1,1,1,4,5,1,5,1,5,1,1,2,1,5,1,2,1,1,5,1,5,2,1,5,1,5,4,1,5,2,1,1,1,5,2,1,5,1,5,2,5,1,1,5,4,1,5,1,5,4,5,1,1,5,5,1,2,1,5,5,1,4,1,5,6,6,6,2,1,1,1,5,2,1,1,5,1,2,1,5,1,1,2,1,5,1,5,
27、2,1,5,5,1,2,5,1,1,1,2,5,1,1,5,2,5,1,5,1,2,5,1,5,5,2,5,5,1,5,2,6,2,1,1,3,1,1,1,4,3,1,1,4,1,3,1,4,1,1,3,4,1,1,1,4,1,1,1,3,4,1,1,3,1,4,1,3,1,1,4,1,5,1,5,4,1,5,5,1,4,3,1,1,1,4,5,1,1,5,4,5,1,5,1,5,1,1,1,2,5,1,1,2,1,5,1,1,5,2,5,1,1,5,4,5,1,2,1,1,5,1,2,1,5,5,1,2,5,1,5,1,4,1,5,5,1,4,5,1,5,1,5,1,2,5,1,5,1,4,
28、5,1,5,2,1,5,1,5,2,5,5,1,5,4,1,5,1,5,5,2,5,1,5,5,6,5,1,5,6,5,5,2,5,1,5,5,4,1,1,1,5,5,1,5,2,5,5,1,5,6,5,6,5,1,1,5,6,5,1,5,6,5,1,5,5,6,5,5,1,1,6,5,5,1,5,6,6,2,1,1,6,6,6,5,1,1,5,2,6,2,1,5,2,6,6,1,5,6,2,6,1,5,6,6,2,2,6,2,1,5,2,6,2,5,1,2,6,6,5,1,5,1,2,6,2,5,1,2,6,6,6,2,1,5,6,6,2,6,5,1,6,5,1,2,6,6,6,2,1,5,
29、6,6,2,5,1 有 6 个匹配数,总共 296 .如下: 1,1,1,2,5,1,1,1,3,6,1,1,2,2,6,1,1,2,3,3,1,1,3,2,3,1,1,3,3,2,1,1,4,6,6,1,1,5,2,5,1,1,5,4,5,1,1,5,5,2,1,1,5,5,4,1,2,1,2,6,1,2,1,3,3,1,2,1,5,5,1,2,3,1,3,1,2,3,3,1,1,2,3,3,3,1,2,5,5,1,1,3,1,2,3,1,3,1,3,2,1,3,2,1,3,1,3,2,3,1,1,3,2,3,3,1,3,3,1,2,1,3,3,2,1,1,3,3,2,3,1,3,3,3,2
30、,1,3,6,6,6,1,4,1,5,5,1,4,5,5,1,1,5,1,2,5,1,5,1,4,5,1,5,2,5,5,1,5,5,2,1,1,5,5,2,5,1,5,5,4,1,1,5,5,5,2,1,5,5,5,6,1,5,5,6,5,1,5,6,5,5,2,1,1,2,6,2,1,1,3,3,2,1,1,5,5,2,1,3,1,3,2,1,3,3,1,2,1,3,3,3,2,1,5,5,5,2,3,1,1,3,2,3,1,3,1,2,3,1,3,3,2,3,3,1,1,2,3,3,1,3,2,3,3,3,1,2,5,5,1,1,2,5,5,5,1,2,6,2,4,6,2,6,2,5,5
31、,2,6,2,6,4,2,6,3,3,6,2,6,3,6,3,2,6,4,2,6,2,6,4,6,2,2,6,4,6,6,2,6,6,2,4,2,6,6,3,3,2,6,6,4,6,2,6,6,6,4,3,1,1,2,3,3,1,1,3,2,3,1,2,1,3,3,1,2,3,1,3,1,2,3,3,3,1,3,1,2,3,1,3,2,1,3,1,3,2,3,3,1,3,3,2,3,2,1,1,3,3,2,1,3,1,3,2,1,3,3,3,2,3,1,1,3,2,3,1,3,3,2,3,3,1,3,2,6,3,6,3,2,6,6,3,3,3,1,1,2,3,3,1,2,1,3,3,1,2,3
32、,3,3,1,3,2,3,3,2,1,1,3,3,2,1,3,3,3,2,3,1,3,3,2,6,6,3,3,3,1,2,3,3,3,2,1,3,3,6,2,6,3,3,6,6,2,3,5,6,6,6,3,6,2,3,6,3,6,2,6,3,3,6,3,2,6,3,6,3,6,2,3,6,5,6,6,3,6,6,2,3,3,6,6,5,6,3,6,6,6,5,4,1,1,5,5,4,2,6,2,6,4,2,6,6,2,4,2,6,6,6,4,5,1,5,5,4,5,5,1,1,4,5,5,1,5,4,6,2,2,6,4,6,2,6,2,4,6,2,6,6,4,6,6,2,6,4,6,6,6,2
33、,5,1,1,2,5,5,1,1,4,5,5,1,2,5,5,5,1,5,4,5,5,1,5,5,4,5,2,1,1,1,5,2,1,1,5,5,2,1,5,1,5,2,1,5,5,5,2,5,1,1,5,2,5,5,1,5,2,6,2,5,5,3,6,6,6,5,4,1,1,5,5,4,1,5,1,5,4,5,1,1,5,4,5,1,5,5,5,1,1,2,5,5,1,1,4,5,5,1,2,1,5,5,1,2,5,5,5,1,4,1,5,5,1,5,4,5,5,2,1,5,5,5,2,5,1,5,5,2,6,2,5,5,5,1,2,5,5,6,5,1,5,6,3,6,6,5,6,5,5,1
34、,5,6,6,3,6,5,6,6,6,3,6,2,1,1,2,6,2,1,2,1,6,2,2,1,1,6,2,2,6,4,6,2,3,3,6,6,2,3,6,3,6,2,4,2,6,6,2,4,6,2,6,2,4,6,6,6,2,6,2,4,6,2,6,3,3,6,2,6,4,6,6,2,6,6,4,6,3,1,1,1,6,3,2,6,3,6,3,3,2,6,6,3,3,6,2,6,3,5,6,6,6,3,6,2,3,6,3,6,5,6,6,3,6,6,5,6,4,2,6,2,6,4,2,6,6,6,4,6,2,6,6,4,6,6,2,6,5,3,6,6,6,5,5,5,1,6,5,6,3,6
35、,6,5,6,6,3,6,6,2,3,3,6,6,2,4,6,6,6,2,6,4,6,6,3,5,6,6,6,3,6,5,6,6,4,1,1,6,6,4,2,6,6,6,4,6,2,6,6,5,3,6,6,6,5,6,3,6,6,6,2,4,6,6,6,3,1,6,6,6,3,5,6,6,6,5,3,1,1,2,6,4,1,1,4,2,6,1,1,4,6,2,1,1,5,3,6,1,1,5,6,3,1,2,6,2,3,1,2,6,2,5,1,2,6,3,6,1,2,6,4,1,1,2,6,5,6,1,2,6,6,3,1,2,6,6,5,1,3,1,5,6,1,3,2,6,2,1,3,2,6,6
36、,1,3,6,2,6,1,3,6,5,1,1,3,6,6,2,1,4,1,2,6,1,4,6,2,1,1,5,1,3,6,1,5,2,2,6,1,5,4,6,6,1,5,6,2,2,1,5,6,3,1,1,5,6,4,6,1,5,6,6,4,2,1,5,2,6,2,1,5,6,2,2,1,5,6,6,2,2,6,5,1,2,5,1,2,6,2,6,2,1,3,2,6,2,3,1,2,6,4,1,1,2,6,5,1,2,2,6,6,3,1,3,1,1,5,6,3,1,2,6,2,3,1,2,6,6,3,2,6,2,1,3,5,1,5,6,3,6,5,1,1,3,6,5,1,5,3,6,6,2,1
37、,4,1,1,2,6,4,1,5,6,6,4,6,2,1,1,4,6,6,5,1,5,1,1,3,6,5,1,2,2,6,5,1,4,6,6,5,1,5,3,6,5,1,5,6,3,5,2,6,2,1,5,6,6,2,1,6,2,1,1,4,6,2,1,3,6,6,2,1,4,1,6,2,1,5,2,6,2,2,1,5,6,2,2,5,1,6,2,4,1,1,6,2,5,1,2,6,2,6,3,1,6,3,1,1,5,6,3,1,2,6,6,3,1,5,1,6,3,5,1,1,6,3,5,1,5,6,3,6,2,1,6,4,1,5,6,6,4,6,5,1,6,5,1,1,3,6,5,1,3,1
38、,6,5,1,4,6,6,5,1,5,3,6,5,6,2,1,6,6,2,1,3,6,6,2,3,1,6,6,4,1,5,6,6,4,5,1,6,6,5,1,2,6,6,5,1,4,1,5,2,6,4,1,5,4,2,6,1,5,4,6,2,1,5,6,2,4,2,6,4,1,5,2,6,4,5,1,2,6,5,1,4,4,1,5,2,6,4,1,5,6,2,4,2,6,5,1,4,5,1,2,6,4,6,2,1,5,4,6,2,5,1,5,1,2,6,4,5,1,4,2,6,5,1,4,6,2,6,2,1,5,4,6,2,4,1,5,6,2,4,5,1,6,2,5,1,4 有 7 个匹配数,
39、总共 699 .如下: 1,1,2,4,4,1,1,2,5,5,1,1,3,3,4,1,1,3,3,6,1,1,3,4,3,1,1,3,6,3,1,1,4,2,4,1,1,4,3,3,1,1,4,4,2,1,1,4,4,6,1,1,4,5,5,1,1,4,6,4,1,2,1,4,4,1,2,2,2,3,1,2,2,3,2,1,2,3,2,2,1,2,4,1,4,1,2,4,4,1,1,2,5,5,5,1,3,1,3,4,1,3,1,3,6,1,3,1,4,3,1,3,2,2,2,1,3,3,1,4,1,3,3,4,1,1,3,4,1,3,1,3,4,3,1,1,3,6,3,1,1,4,1,2,
40、4,1,4,1,3,3,1,4,1,4,2,1,4,1,4,6,1,4,2,1,4,1,4,2,4,1,1,4,3,1,3,1,4,3,3,1,1,4,4,1,2,1,4,4,2,1,1,4,6,4,1,1,5,2,2,2,1,5,4,4,4,1,5,4,5,5,1,5,5,4,5,1,5,5,5,4,2,1,1,4,4,2,1,2,2,3,2,1,2,3,2,2,1,3,2,2,2,1,4,1,4,2,1,4,4,1,2,1,5,2,2,2,2,1,2,3,2,2,1,3,2,2,2,1,5,2,2,2,2,1,3,2,2,2,1,5,2,2,2,3,1,2,2,2,5,1,2,2,3,1,
41、2,2,2,3,2,1,2,2,5,1,2,2,2,6,2,4,2,2,6,4,6,2,2,6,5,5,2,2,6,6,4,2,3,1,2,2,2,3,2,1,2,2,3,2,2,1,2,3,3,6,6,2,3,6,3,6,2,3,6,6,3,2,4,1,1,4,2,4,1,4,1,2,4,2,6,2,2,4,2,6,6,2,4,4,1,1,2,4,6,2,6,2,4,6,6,2,2,4,6,6,6,2,5,1,2,2,2,5,2,6,5,2,5,5,2,6,2,5,5,6,2,2,5,6,2,5,2,6,2,2,4,2,6,2,3,3,2,6,2,4,2,2,6,2,4,4,2,6,4,4,
42、6,2,6,4,6,4,2,6,5,2,5,2,6,5,5,2,2,6,5,5,6,2,6,5,6,5,2,6,6,4,2,2,6,6,4,4,2,6,6,5,5,3,1,1,3,4,3,1,1,3,6,3,1,1,4,3,3,1,2,2,2,3,1,3,1,4,3,1,3,4,1,3,1,4,1,3,3,1,4,3,1,3,2,1,2,2,3,2,2,1,2,3,2,2,2,1,3,2,3,6,6,3,2,6,2,3,3,3,1,1,4,3,3,1,4,1,3,3,2,6,2,3,3,3,4,5,3,3,3,5,4,3,3,3,5,6,3,3,3,6,5,3,3,4,1,1,3,3,4,3,
43、5,3,3,4,5,3,3,3,4,6,6,3,3,5,3,4,3,3,5,3,6,3,3,5,4,3,3,3,5,6,3,3,3,6,3,5,3,3,6,4,6,3,3,6,5,3,3,3,6,6,4,3,4,1,1,3,3,4,1,3,1,3,4,3,1,1,3,4,3,3,5,3,4,3,5,3,3,4,3,6,6,3,4,5,3,3,3,4,5,5,5,3,4,6,3,6,3,4,6,6,3,3,5,3,3,4,3,5,3,3,6,3,5,3,4,3,3,5,3,6,3,3,5,4,3,3,3,5,4,5,5,3,5,5,4,5,3,5,5,5,4,3,5,6,3,3,3,6,3,1,
44、1,3,6,3,3,5,3,6,3,4,6,3,6,3,5,3,3,6,3,6,4,3,6,4,3,6,3,6,4,6,3,3,6,5,3,3,3,6,6,3,2,3,6,6,3,4,3,6,6,4,3,4,1,1,2,4,4,1,1,3,3,4,1,1,4,2,4,1,1,4,6,4,1,2,1,4,4,1,2,4,1,4,1,3,1,3,4,1,3,3,1,4,1,4,1,2,4,1,4,2,1,4,1,5,4,4,4,1,5,5,5,4,2,1,1,4,4,2,1,4,1,4,2,2,6,2,4,2,2,6,6,4,2,4,1,1,4,2,6,2,2,4,2,6,2,4,4,2,6,4,
45、6,4,2,6,6,4,4,3,1,1,3,4,3,1,3,1,4,3,3,1,1,4,3,3,3,5,4,3,3,5,3,4,3,3,6,6,4,3,5,3,3,4,3,5,5,5,4,3,6,3,6,4,3,6,6,3,4,4,1,1,2,4,4,1,2,1,4,4,1,5,4,4,4,2,1,1,4,4,2,6,2,4,4,2,6,6,4,4,4,1,5,4,4,4,5,1,4,4,5,1,4,4,4,6,2,6,4,4,6,6,2,4,5,1,4,4,4,5,3,3,3,4,5,3,5,5,4,5,5,3,5,4,5,5,5,1,4,5,5,5,3,4,5,5,6,6,4,5,6,5,
46、6,4,5,6,6,5,4,6,2,4,6,4,6,2,6,4,4,6,3,3,6,4,6,3,6,3,4,6,4,1,1,4,6,4,2,6,4,6,4,6,2,4,6,5,5,6,4,6,5,6,5,4,6,6,2,2,4,6,6,2,4,4,6,6,3,3,4,6,6,5,5,5,1,2,2,2,5,1,4,4,4,5,1,4,5,5,5,2,2,6,5,5,2,5,2,6,5,2,5,6,2,5,2,6,5,2,5,2,6,5,6,5,2,6,6,5,5,3,3,3,4,5,3,3,3,6,5,3,3,4,3,5,3,3,6,3,5,3,4,3,3,5,3,4,5,5,5,3,5,4,
47、5,5,3,5,5,4,5,3,6,3,3,5,4,1,5,5,5,4,3,3,3,5,4,3,5,5,5,4,5,3,5,5,4,5,5,1,5,4,5,5,3,5,4,5,6,6,5,4,6,5,6,5,4,6,6,5,5,5,1,4,5,5,5,2,1,1,5,5,2,2,6,5,5,2,6,6,5,5,3,4,5,5,5,3,5,4,5,5,4,1,1,5,5,4,1,5,5,5,4,3,5,5,5,4,5,1,5,5,4,5,3,5,5,4,6,6,5,5,5,1,4,5,5,5,2,1,5,5,5,3,4,5,5,5,4,3,5,5,6,2,2,5,5,6,2,6,5,5,6,4,
48、6,5,5,6,6,2,5,5,6,6,4,5,6,2,2,5,5,6,2,5,2,5,6,2,5,6,5,6,2,6,5,5,6,3,3,3,5,6,4,5,6,5,6,4,6,5,5,6,5,2,6,5,6,5,4,6,5,6,5,6,2,5,6,5,6,4,5,6,6,2,5,5,6,6,4,5,5,6,6,5,4,6,2,2,4,6,6,2,2,5,5,6,2,4,4,6,6,2,4,6,4,6,2,5,2,5,6,2,5,5,2,6,2,5,5,6,6,2,5,6,5,6,2,6,4,2,6,2,6,4,4,6,2,6,5,5,6,3,1,1,3,6,3,1,3,1,6,3,2,3,
49、6,6,3,3,1,1,6,3,3,3,5,6,3,3,4,6,6,3,3,5,3,6,3,3,6,4,6,3,4,3,6,6,3,4,6,3,6,3,5,3,3,6,3,6,3,2,6,3,6,3,4,6,3,6,4,3,6,4,1,1,4,6,4,1,4,1,6,4,2,2,6,6,4,2,6,4,6,4,3,3,6,6,4,3,6,3,6,4,4,1,1,6,4,4,2,6,6,4,4,6,2,6,4,5,5,6,6,4,5,6,5,6,4,6,2,2,6,4,6,2,4,6,4,6,3,3,6,4,6,5,5,6,5,2,6,5,6,5,3,3,3,6,5,4,5,6,6,5,4,6,
50、5,6,5,5,2,6,6,5,5,4,6,6,5,5,6,2,6,5,5,6,4,6,5,6,2,5,6,5,6,4,5,6,5,6,5,4,6,6,2,2,4,6,6,2,4,2,6,6,2,4,4,6,6,2,5,5,6,6,3,2,3,6,6,3,3,2,6,6,3,3,4,6,6,3,4,3,6,6,4,3,3,6,6,4,5,5,6,6,5,4,5,6,6,5,5,4,6,6,6,4,2,1,1,2,4,6,1,1,3,5,6,1,1,3,6,5,1,1,5,2,3,1,1,5,3,2,1,1,5,3,4,1,1,5,4,3,1,2,1,4,6,1,2,1,5,3,1,2,2,6,
51、3,1,2,2,6,5,1,2,3,1,5,1,2,3,2,6,1,2,3,5,1,1,2,3,6,2,1,2,3,6,6,1,2,5,1,3,1,2,5,2,6,1,2,5,6,2,1,2,5,6,6,1,2,6,3,2,1,2,6,5,2,1,3,1,5,2,1,3,1,5,4,1,3,2,1,5,1,3,2,2,6,1,3,2,5,1,1,3,4,1,5,1,3,4,5,1,1,3,4,6,6,1,3,5,1,2,1,3,5,1,4,1,3,6,2,2,1,3,6,4,6,1,3,6,6,4,1,4,1,5,3,1,4,3,1,5,1,4,3,5,1,1,4,3,6,6,1,4,5,1,3,1,4,5,6,6,1,4,6,3,6,1,4,6,5,6,1,4,6,6,3,1,4,6,6,5,1,5,1,2,3,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025妇女权益保障集体合同
- 《2025项目合作合同书》
- 2024-2025学年人教版PEP四年级英语下册期末试卷(3)(含答案含听力原文无音频)
- 2025标准写字楼租赁合同模板下载
- 2025典范保险合同模板
- 2025装饰装修设计合同争议
- 2025年供气合同模板范文
- 2025私人房屋买卖合同书范本
- 2025在线签订劳动合同的操作流程
- 2025年网络广告投放合同范本
- 2024-2025学年小学科学六年级下册湘科版(2024)教学设计合集
- 新型建筑材料应用论文
- 2024复合材料和增强纤维 碳纤维增强塑料(CFRP)和金属组件十字拉伸强度的测定
- 《油气井增产技术》课件-63 拉链式压裂井场布置
- 水利工程竣工自查报告
- 新疆维吾尔自治区新2024年中考数学模拟试卷附答案
- 2024年中国老年糖尿病诊疗指南解读(2024年版)
- 震后学校维修合同书
- 手术室不良事件警示教育
- 李白:《将进酒》经典省公开课一等奖全国示范课微课金奖课件
- 19S406建筑排水管道安装-塑料管道
评论
0/150
提交评论