版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、电子信息系统仿真与设计课程设计报告设计课题:对蹦极跳系统的安全问题的讨论姓名: 武广英学院:信息工程学院专业:电子工程班 级:09级学 号:3日 期2010-2011第三学期指导教师:光明军蕊大学威海分校信息工程学院目录一、问题的描述 3二、系统模型及建模分析 3三、仿真实现 4四、实验过程中遇到的问题 8五、仿真结果分析 8六、总结 9七、附录 10问题的描述蹦极跳是一种挑战人身体和精神极限的一种极限运动,过程中蹦极者身上系 着一根弹力绳从高处的桥梁(或山崖等险峻地带)向下跳。在身体下落过程中, 蹦极者的身体处于失重状态。这种运动看上去非常危险,也许一不小心就会丧生。 但是,蹦极对于蹦极者而
2、言,是否真的存在安全隐患,威胁生命健康呢,下面我 将建立一个蹦极跳的系统仿真模型,在此基础上分析蹦极运动是否是一种真正安 全的运动项目。二、系统模型及建模分析在蹦极跳的下落过程中,蹦极者几乎处于失重的状态。按照牛顿运动规律, 自由下落的物体的位置由下式确定:加=砒f 碍上一总斗i:其中m为人体的质量,g为重力加速度,x为物体的位置,第二项与第三项 表示空气的阻力。其中位置x的基准为蹦极者开始跳下的位置(即选择桥梁作为 位置的起点x=0),低于桥梁的位置为正值,高于桥梁的位置为负值。如果物体 系在一个弹性常数为k的弹力绳索上,定义绳索下端的初始位置为 0,则对其落 体位置的影响为:因此整个蹦极跳
3、系统的数学描述为:rrix -mg十虹_ %亍一佝毕从蹦极跳系统的数学模型中可以得知,此系统为一典型的具有连续状态的 非线性连续系统。设桥梁距离地面为 50米,蹦极跳着的初始位置为绳索的长度 即x(0)=-30,蹦极者起始速度为0,即;假设其余的参数分别为k=20,a2=ai=1, m=70kg g=10m/V。下面我将利用以上分析及数据建立蹦极跳系统的仿真模型, 并在如上的参数下对系统进行仿真,通过仿真的结果和具体图形分析此蹦极跳系 统对70kg的蹦极者而言是否安全,从而总的分析蹦极跳这项极限运动对体重为 多少的人群是安全的项目,以后喜爱刺激运动的人们可以根据这个模型来衡量自 己是否适合参加
4、蹦极跳。三、仿真实现用simulink实现仿真在蹦极跳系统模型中,主要使用的系统模块有:(1)Continuous模块库中Integrator模块:用来实现系统中的微分运算。(2)Functions &Tables模块库中的Fen模块:用来实现系统中空气阻力的 函数关系。(3)Nonlinear模块库中的Switch模块:用来实现系统弹力绳索的函数关 系。显示蹦极者的相对位置,即相对于桥梁的位置;而下面的Scope模块用来显示蹦 极者的绝对位置,即相对于地面的距离。仿真时保持总体参数不变,只改变蹦极者质量、绳索弹性系数和人距离地面的初始高度其中之一,探究其变化对蹦极者安全的影响情况。仿
5、真结果为:(1) 蹦极者的相对位置:eo60112020 P2040eo:3D60402D608010060I-dO202040BOSO(2) 蹦极者的绝对位置:(一)假设保持其他参数不变,只变化蹦极者体重,结果如下:从上图可以看出体重为70kg的人不适宜参加蹦极跳这项运动,如若参加,会存在一定的危险,然而当 m=60kg时,仿真后结果如下所示:(1)蹦极者的相对位置:100nrinie offset: oTime0Time offset: (2)蹦极者的绝对位置:306040202080100Time offset:(二)假设保持其他参数不变,只变化弹性绳索的弹性系数,结果如下:(1)蹦极者
6、的相对位置:4020-20丄20soTime叫由此图可见,当绳索的弹性系数不断增加时,蹦极者越安全(三)假设保持其他参数不变,只变化蹦极者距离地面的初始高度,结果如下:(1)蹦极者的相对位置:02040 SO 3010010C5C0-5C100-15C20C25CTime offset: 0(2)蹦极者的绝对位置:02040608010030C25C20C15C10C5C0-5CTime offset: 0可以由此可见,当其他参数保持不变的情况下,增加人距离地面的初始高度, 提高蹦极者的安全性。四、实验中遇到的问题实验中遇到了很多问题,刚开始的时候根本不知道从何下手,查阅了很多资 料,最后决定
7、选用蹦极这个简单的模型进行仿真。选定模型后做起来就容易许多, 不过连接好仿真电路后运行结果很离谱,才发现自己的好多参数都没有设定好, 然后经过几次试验,将基本参数设置好后运行,又发现该系统的仿真的结果中, 仿真曲线的波峰与波谷处曲线很不光滑图像处于失真状态,波形如下图所示。出现这个波形是我一开始没有预料到的结果, 从蹦极跳系统的数学方程中分 析可知,系统的输出曲线应该是光滑曲线。 随后我又认真的核对了一下仿真系统 与模型的公式,没有发现错误。后来发现造成这一结果的主要的原因是: 对此系 统仿真来说,连续求解器的默认积分误差取值偏大。 因此,只要设置合适的积分 误差限,就能获得最好的仿真效果。对
8、蹦极跳系统的积分误差、最大仿真步长与起始仿真步长进行合适设置:最 大仿真步长为0.1 ;初始仿真步长为0.01 O然后再进行仿真,就能得到正确的仿 真图,从图中可以看出,减小系统仿真积分误差可以有效地提高系统的仿真性能, 使仿真输出波峰与波谷的曲线变得比较光滑, 然后再不断改变体重参数就可以判 别蹦极跳的安全围了。五、仿真结果分析从蹦极跳的系统仿真结果中可知:对于体重为70kg的蹦极者来说,此系统是 不安全的,因为蹦极者与地面之间的距离出现了负值, 即蹦极者在下落过程中会 触地,而安全的蹦极跳系统要求二者之间的距离应该大于 0。然而当蹦极者的体 重小于60kg的时候,蹦极者与地面的距离大于等于
9、 0,此时对于蹦极者来说是 安全的,不会出现触底的情况。 而当绳索的弹性系数增大的时候由仿真结果可知 对于蹦极者而言相对更安全些。 而当其他参数都不变的情况下, 改变蹦极者距离 地面的初始高度, 也能增强其蹦极的安全性。 因此,必须使用弹性常数较大的弹 性绳索,才能保证蹦极者的安全。当然,在蹦极者触地的情况下,系统的动态方 程会发生改变, 系统的输出结果也将发生变化。 但是一旦蹦极者触地, 此项模型 的研究也便失去了意义,所以给出的仿真结果没有考虑触地后结果变化这一点 (假设蹦极者距离地面足够大,不会触地) 。由仿真结果可以得到以下结论:当蹦极者体重较轻者比体重较重者安全; 为了确保蹦极者的生
10、命安全, 应选择弹性系数较大的弹性绳索; 在蹦极跳过程中, 人体距离地面越远越安全。 蹦极跳者在参加蹦极跳运动之前最好做好充分的准备 和必要的设施工具检查,以保障自身的人身安全。六、总结经过本次 matlab simulink 系统仿真的学习,在这个小学期算是收获颇丰, 充实了我小学期的后一周。 最大的收获是我又掌握了一个新的仿真软件, 在此之 前已经掌握了 multisim 系统仿真,并应用那个软件仿真了数字时钟,这些仿真 的学习为我以后的学习提供了更好更多的实验手段和方法。 从刚一开始的一无所 知,不知道从何下手,到经过老师和老师的教导及自己不断的探索之后,我对 simulink 仿真有了
11、初步的了解,并且也培养出了我对仿真软件浓厚的兴趣。经 过这几天的努力学习,虽然过程很辛苦,也曾很迷茫,也一度想过要放弃,但是 我始终感觉 simulink 仿真正在等待着我去研究发现它的神奇之处。而我也体会 到其实我最大的敌人就是自己, 每当遇到一点小困难的时候我们第一个想法就是 放弃,其实只要再坚持一下就会成功,不要害怕去接触新事物,不要畏惧困难, 只要持之以恒,坚持不懈,努力钻研,当你最终掌握了它的规律时,你会豁然开 朗。不过,我学习的时间还很短,在接下来的时间里,我要努力去用这些仿真软 件解决更多的实际问题, 还可以将其应用于以后的数学建模竞赛中, 让 simulink 软件学以致用!七
12、、附录321. 利用simulink仿真来实现摄氏温度到华氏温度的转换Tf2. 设系统微分方程为爲X 2y,试建立系统模型并仿真仿真电路连接如图所示:仿真结果如图所示:Tirn© offsert; O8Aii3. 利用 simulink 仿真 X(t) iOS t 9cos3 t 25cos5 t)'取 A=1,2仿真电路连接如图所示:仿真结果如图所示:4. 建立如图1所示的仿真模型并进行仿真,改变增益,观察x-y图形变化,并用 浮动的scope模块观测各点波形。仿真电路连接如图所示:SliderGainXY GraphFloatingScope图1.题目4当Slider G
13、ain 为1时XY Graph显示为一个圆,Slider Gain 逐渐变大时,XY Graph变成形状不同的椭圆。仿真结果如图所示:> V Plot5. 有初始状态为0的二阶微分方程x 0.5x0.4x 2u(t)其中u(t)是单位阶跃函数,试建立系统模型并仿真。仿真电路连接如图所示:仿真结果如图所示:20203040Time offset' O6. 通过构造SIMULINK模型求ycos(t)dt的结果,其中初值分别为 屮(0)=0,y2(0)=1y2(0)=1 :y1(0)=0 时:7. 分析二阶动态电路的零输入响应图2为典型的二阶动态电路,其零输入响应有过阻尼、临界阻尼和
14、欠阻尼三种情况,已知 L=0.5H, C=0.02F, R=1,2, 3,13,初始值 Uc(0) 1V,iL(0)0求Uc(t)和Jt)的零输入响应并画出波形。(1用simlink的方法,2用脚本文件 的方法)LRC图2题目7二阶动态电路(1) 用simlink 的方法:仿真电路连接如图所示:电压仿真结果如图所示:0 80.E0 2AnI011-0.6byu3yOTTSSt电流仿真结果如图所示:(2)用脚本文件的方法:定义函数文件funcforex123.m function xdot=funcforex123(t,x,flag,R,L,C) xdot=zeros(2,1);xdot(1)=
15、-R/L*x(1)-1/L*x(2)+1/L*f(t);xdot(2)=1/C*x(1);function in=f(t)in=0;脚本文件:L=0.5;C=0.02;for R=1 2 3 4 5 6 7 8 9 10 11 12 13t,x=ode45( 'funcforex123' ,0 7,0;1,R,L,C);figure(1);plot(t,x(:,1), 'b' );hold on;xlabel( 'timesec' );text(0.9,0.07, 'leftarrowi -L(t)' );grid on;figu
16、re(2);plot(t,x(:,2), 'r' );hold on;xlabel( 'timesec' );text(0.5,0.3, 'leftarrowu -C(t)' );grid on;end在matlab工作空间中运行后得到如下电压与电流的结果图,与simulink系统仿真结果一致。结果图:电压图与电流图如下两图所示(其中Rv10时,为欠阻尼;R=1Q为临界阻尼;R>10,为过阻尼。)0.150.10.050-0.05-0.1-0.15-0.2timesec8. 一池中有水2000m3,含盐2 kg,以6 m3/分 的速率向池中
17、注入浓度为0.5 kg / m3的盐水,又以4 m3 /分的速率从池中流出混合后的盐水,问欲使池 中盐水浓度达到0.2 kg / m3,需要多长时间? ( 1用simlink的方法,2用脚 本文件的方法)【附加:试画出浓度vs时间的曲线】设t时刻的浓度为C(t)=错误,故有框图:(1) 用simlink 的方法:仿真电路连接如图所示:Addi仿真结果如图所示:5|O4_ -m;i:0,r r * ,* " ":' r " £ » «111 | aJ" ' B * B a 1 * * J *.*»*» «i - a a * " * B u 1 11 * * B * a *" B 1 B 1 *»/-:/;:二| b.5001OQO1 5002000Time offset: D(2)用脚本文件的方法:t=0:2500;v 1= 6;v2=4;c1=0.5;c2=0.2;c=(2+3*t)./(2000+6*t);plot(t,c); grid on在matlab工作空间中运行结果如下所示:可以看
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湿法炼锌工艺流程题目及答案
- 有关中药学的题目及答案
- 养老院老人生活娱乐活动组织人员职业发展规划制度
- 养老院工作人员保密制度
- 养老院财务审批制度
- 办公室内部沟通与协作制度
- 钛卷带开平线处罚制度
- 酒店财务报销制度
- 奥数3年级题目及答案
- 2026年及未来5年市场数据中国门窗行业发展前景预测及投资方向研究报告
- 2026黑龙江哈尔滨家五常市广源农林综合开发有限公司招聘工作人员5人备考题库及一套完整答案详解
- 2025年建筑工程安全生产标准化手册
- 2025年大学生物(细胞结构与功能)试题及答案
- 2026年张家界航空工业职业技术学院高职单招职业适应性测试参考题库含答案解析
- 氮气安全技术说明书
- 绘本讲师培训课件
- 广东生地会考试题及答案
- 2025年品质经理年度工作总结及2026年度工作计划
- 2025中国胸痛中心诊疗指南
- 药品抽检应急预案(3篇)
- 克服ALK靶向耐药的免疫联合治疗新策略
评论
0/150
提交评论