版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上递推数列通项求解方法类型一:()思路1(递推法):。思路2(构造法):设,即得,数列是以为首项、为公比的等比数列,则,即。例1 已知数列满足且,求数列的通项公式。解:方法1(递推法):。方法2(构造法):设,即,数列是以为首项、为公比的等比数列,则,即。类型二: 思路1(递推法):。思路2(叠加法):,依次类推有:、,将各式叠加并整理得,即。例2 已知,求。解:方法1(递推法):。方法2(叠加法):,依次类推有:、,将各式叠加并整理得,。类型三: 思路1(递推法):。思路2(叠乘法):,依次类推有:、,将各式叠乘并整理得,即。例3 已知,求。解:方法1(递推法):。方
2、法2(叠乘法):,依次类推有:、,将各式叠乘并整理得,即。类型四: 思路(特征根法):为了方便,我们先假定、。递推式对应的特征方程为,当特征方程有两个相等实根时, (、为待定系数,可利用、求得);当特征方程有两个不等实根时、时,(、为待定系数,可利用、求得);当特征方程的根为虚根时数列的通项与上同理,此处暂不作讨论。例4 已知、,求。解:递推式对应的特征方程为即,解得、。设,而、,即,解得,即。类型五: ()思路(构造法):,设,则,从而解得。那么是以为首项,为公比的等比数列。例5 已知,求。解:设,则,解得,是以为首项,为公比的等比数列,即,。类型六: (且)思路(转化法):,递推式两边同时
3、除以得,我们令,那么问题就可以转化为类型二进行求解了。例6 已知,求。解:,式子两边同时除以得,令,则,依此类推有、,各式叠加得,即。类型七: ()思路(转化法):对递推式两边取对数得,我们令,这样一来,问题就可以转化成类型一进行求解了。例7 已知,求。解:对递推式左右两边分别取对数得,令,则,即数列是以为首项,为公比的等比数列,即,因而得。类型八:()思路(转化法):对递推式两边取倒数得,那么,令,这样,问题就可以转化为类型一进行求解了。例8 已知,求。解:对递推式左右两边取倒数得即,令则。设,即,数列是以为首项、为公比的等比数列,则,即,。类型九: (、)思路(特征根法):递推式对应的特征
4、方程为即。当特征方程有两个相等实根时,数列即为等差数列,我们可设(为待定系数,可利用、求得);当特征方程有两个不等实根、时,数列是以为首项的等比数列,我们可设(为待定系数,可利用已知其值的项间接求得);当特征方程的根为虚根时数列通项的讨论方法与上同理,此处暂不作讨论。例9 已知, (),求。解:当时,递推式对应的特征方程为即,解得、。数列是以为首项的等比数列,设,由得则,即,从而,。常见递推数列通项公式的求法重、难点:1. 重点: 递推关系的几种形式。2. 难点:灵活应用求通项公式的方法解题。【典型例题】例1 型。(1)时,是等差数列,(2)时,设 比较系数: 是等比数列,公比为,首项为 例2
5、 型。(1)时,若可求和,则可用累加消项的方法。例:已知满足,求的通项公式。解: 对这()个式子求和得: (2)时,当则可设 解得:, 是以为首项,为公比的等比数列 将A、B代入即可(3)(0,1)等式两边同时除以得令 则 可归为型例3 型。(1)若是常数时,可归为等比数列。(2)若可求积,可用累积约项的方法化简求通项。例:已知:,()求数列的通项。解: 例4 型。考虑函数倒数关系有 令 则可归为型。 练习:1. 已知满足,求通项公式。解:设 是以4为首项,2为公比为等比数列 2. 已知的首项,()求通项公式。解: 3. 已知中,且求数列通项公式。解: 4. 数列中,求的通项。解: 设 5. 已知:,时,求的通项公式。解:设 解得: 是以3为首项,为公比的等比数列 【模拟试题】1. 已知中,求。2. 已知中,()求。3. 已知中,()求。4. 已知中,()求。5. 已知中,其前项和与满足()(1)求证:为等差数列 (2)求的通项公式6. 已知在正整数数列中,前项和满足 (1)求证:是等差数列 (2)若求的前n项和的最小值1. 解:由,得 2. 解:由得: 即是等比数列 3. 解:由得 成等差数列, 4. 解: () ()设即 是等差数列 5. 解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年鄢陵县幼儿园教师招教考试备考题库附答案解析(必刷)
- 2025年湟中县幼儿园教师招教考试备考题库含答案解析(必刷)
- 2025年山西艺术职业学院单招职业技能考试题库附答案解析
- 2025年榕江县幼儿园教师招教考试备考题库附答案解析
- 2025年南漳县幼儿园教师招教考试备考题库带答案解析
- 2025年河北外国语学院马克思主义基本原理概论期末考试模拟题附答案解析(必刷)
- 2026年厦门东海职业技术学院单招职业倾向性测试模拟测试卷带答案解析
- 2025年山西电力职业技术学院单招职业适应性考试题库带答案解析
- 2025年绥江县招教考试备考题库含答案解析(夺冠)
- 2025年唐河县招教考试备考题库带答案解析(夺冠)
- 化工厂2026年春节前安全教育培训
- 交警路面执勤执法培训
- 施工网格化管理方案
- 通风管道安装施工工艺方案
- 2026年九字对联带横批(400副)
- GB 15930-2024建筑通风和排烟系统用防火阀门
- 医学影像解剖学教学设计
- 《异丙肾上腺素》课件
- 中小学教师职业道德考核办法
- 大门围墙施工组织设计方案
- 管道对接施工方案正式版
评论
0/150
提交评论