版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 初一(上)数学 第五章 一元一次方程 一、知识网络二、目标认知重点:一元一次方程的解法,列方程解应用题难点:列方程解应用题三、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a0)。要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。如
2、果,那么;(c为一个数或一个式子)。等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。即:(其中m0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:,将其化为: 方程的右边没有变化,这要与“去分母”区别开。2、解一元一次方程的一般步骤:解一元一次方程的一般步骤 常用步骤具体做法依据注意事项去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则
3、、分配律注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)等式基本性质1移项要变号,不移不变号;合并同类项把方程化成axb(a0)的形式合并同类项法则计算要仔细,不要出差错;系数化成1在方程两边都除以未知数的系数a,得到方程的解x等式基本性质2计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用: a0时,方程有唯一解; a=0,b=0时,方程有无数个解; a=0,b0时,方程无解。知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间
4、的关系,寻找等量关系(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程(4)解方程(5)检验,看方程的解是否符合题意(6)写出答案2、解应用题的书写格式:设根据题意解这个方程答。3、常见的一些等量关系常见列方程解应用题的几种类型:类型基本数量关系等量关系(1)和、差、倍、分问题较大量较小量多余量总量倍数×倍量抓住关键性词语(2)等积变形问题变形前后体积相等(3)行程问 题相遇问题路程速度×时间甲走的路程乙走的路程两地距离追及问题同地不同时出发:前者走的路程追者走的路程同时不同地出发:前者
5、走的路程两地距离追者所走的路程顺逆流问题顺流速度静水速度水流速度逆流速度静水速度水流速度顺流的距离逆流的距离(4)劳力调配问题从调配后的数量关系中找相等关系,要抓住“相等”“几倍”“几分之几”“多”“少”等关键词语(5)工程问题工作总量工作效率×工作时间各部分工作量之和1(6)利润率问题商品利润商品售价商品进价商品利润率售价进价×(1利润率)抓住价格升降对利润率的影响来考虑(7)数字问题设一个两位数的十位上的数字、个位上的数字分别为a,b,则这个两位数可表示为10ab抓住数字所在的位置或新数、原数之间的关系(8)储蓄问题利息本金×利率×期数本息和本金利息
6、本金本金×利率×期数×(1利息税率)(9)按比例分配问题甲乙丙abc全部数量各种成分的数量之和(设一份为x)(10)日历中的问题日历中每一行上相邻两数,右边的数比左边的数大1;日历中每一列上相邻的两数,下边的数比上边的数大7日历中的数a的取值范围是1a31,且都是正整数 知识点四:方程与整式、等式的区别(1)从概念来看:整式:单项式和多项式统称整式。等式:用等号来表示相等关系的式子叫做等式。如,mnnm等都叫做等式,而像,m2n不含等号,所以它们不是等式,而是代数式。方程:含有未知数的等式叫做方程。如5x311,等都是方程。理解方程的概念必须明确两点:是等式;含有
7、未知数。两者缺一不可。(2)从是否含有等号来看:方程首先是一个等式,它是用“”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号。(3)从是否含有未知量来看:等式必含有“”,但不一定含有未知量;方程既含有“”,又必须含有未知数。但整式必不含有等号,不一定含有未知量,分为单项式和多项式。四、规律方法指导1、判断一个式子是否是一元一次方程:(1)首先看是否是方程,(2)再看是否满足一元一次方程的三个条件或对原式进行等价变形化简后再看;2、解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。(2)当括号内含有分数时,常由外向内先去括号,再去分母。(3)当分母中
8、含有小数时,可用分数的基本性质化成整数。(4)运用整体思想,即把含有未知数的代数式看做整体进行变形。4、 经典例题透析类型一:一元一次方程的相关概念1、已知下列各式:2x51;871;xy;3xy6;5x3y4z0;x0。其中方程的个数是()A、5B、6C、7D、8举一反三:变式1判断下列方程是否是一元一次方程:(1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)变式2已知:(a-3)(2a+5)x+(a-3)y+60是一元一次方程,求a的值。变式3(2011重庆江津)已知3是关于x的方程2xa=1的解,则a的值是( )A5 B5 C7 D2类型
9、二:一元一次方程的解法解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1。如果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排解题步骤,并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。1巧凑整数解方程:2、举一反三:变式解方程:2巧用观察法解方程:3、3巧去括号解方程:4、举一反三:变式解方程:4运用拆项法解方程:5、5巧去分母解方程:6、举一反三:变式(2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。解:原方程可变形为 (_)去分母,得3(3x+5)=2(2x-1). (_)去括号,得9
10、x+15=4x-2. (_)(_),得9x-4x=-15-2. (_)合并,得5x=-17. (合并同类项)(_),得x=. (_)6巧组合解方程:7、7巧解含有绝对值的方程:8、|x2|30举一反三:【变式1】(2011福建泉州)已知方程,那么方程的解是_.变式2 5|x|-163|x|-4变式3 8利用整体思想解方程:9、类型三、一元一次方程的常见应用题1.优化方案问题10、由于活动需要,78名师生需住宿一晚,他们住了一些普通双人间和普通三人间,结果每间客房正好住满,且在宾馆给他们打五折优惠的基础上一天一共付住宿费2130元。请你算一算,他们需要双人普通间和三人普通间各多少间?类型普通(元
11、/间)豪华(元/间)双人房140300三人房150400举一反三:【变式】某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用相同数量60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算?租几辆车?2.行程中的追及相遇问题11、甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地.问甲、乙行驶的速度分别是多少?举一反三:变式 甲、乙两地相距240千米,汽车从甲地开往乙地,速度
12、为36千米/时,摩托车从乙地开往甲地,速度是汽车的。摩托车从乙地出发2小时30分钟后,汽车才开始从甲地开往乙地,问汽车开出几小时后遇到摩托车?3日历中的方程12、(1)在2006年8月的日历中(如图(1),任意圈出一竖列上相邻的三个数,设中间的一个数为a,则用含a的代数式表示这三个数(从小到大排列)分别是(2)现将连续自然数1至2006按图中(如图(2)的方式排成一个长方形阵列,用一个长方形框出16个数。 图中框出的这16个数的和是。在图(2)中,要使一个长方形框出的16个数之和分别等于2000、2006,是否可能?若不可能,试说明理由;若有可能,请求出该长方形框出的16个数中的最小数和最大数
13、。举一反三:变式每人准备一份日历,在各自的日历上任意圈一个竖列上的相邻的四个数,两个分别把自己所圈4个数的和告诉同伴,由同伴求出这个数。(1)4个数的和等于42。(2)4个数的和等于60。x7xx7x144银行储蓄13、小张在银行存了一笔钱,月利率为2%,利息税为20%,5个月后,他一共取出了本息和为1080元,问它存入的本金是多少元?举一反三:【变式】从1999年11月1日起,全国储蓄存款征收利息税,税率为利息的20%,由各银行储蓄点代扣代收某人在2001年1月存入定期一年的人民币若干元,年利率为2.25%,一年到期后缴纳利息税72元,则他存入的人民币为_元。5图表信息题14、小明家使用的是
14、分时电表,按平时段(6:0022:00)和谷时段(22:00次日6:00)分别计费,平时段每千瓦时电价为0.61元,谷时段每千瓦时电价为0.30元。小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如下图),同时将前4个月的用电量和相应电费制成表格(如下表)。月用电量(千瓦时)电费(元)19051.8029250.8539849.24410548.445根据上述信息,解答下列问题:(1)计算5月份的用电量及相应的电费,将所得结果填入表中;(2)小明家这5个月的平均用电量为_千瓦时;(3)小明家这5个月每月用电量是_趋势(选择“上升”或“下降”);这5个月每月电费 呈_趋势
15、(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500千瓦时,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量举一反三:【变式】(2011江苏无锡)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的15级税率情况见下表:税级现行征税方法草案征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x 5005%0x 15005%02500<x200010%251500<x450010%32000<x500015%1254500<x900020%45000<x2000020%3759000<x3500025%975520000<x4000025%137535000<x5500030%2725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额。“速算扣除数”是为了快捷简便计算个人所得税而设定的一个数。例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按13级超额累进税
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 40604-2021新能源场站调度运行信息交换技术要求》专题研究报告
- 《GBT 35796-2017 养老机构服务质量基本规范》专题研究报告
- 《GB-T 17215.941-2012电测量设备 可信性 第41部分:可靠性预测》专题研究报告
- 2026年河南省驻马店地区单招职业倾向性考试题库及参考答案详解一套
- 云计算信息服务合同
- 智能电网工程师岗位招聘考试试卷及答案
- 2025年休闲健身服务项目发展计划
- 排尿异常护理查房
- 辽宁省2025秋九年级英语全册Unit5Whataretheshirtsmadeof课时1SectionA(1a-2d)课件新版人教新目标版
- 员工成长路径
- DB32T 5124.3-2025 临床护理技术规范 第3部分:成人危重症患者有创动脉血压监测
- 松陵一中分班试卷及答案
- 《小米广告宣传册》课件
- 劳务派遣公司工作方案
- 物理趣味题目试题及答案
- 华师大版数学七年级上册《4.3 立体图形的表面展开图》听评课记录
- 2023-2024学年四川省成都市高二上学期期末调研考试地理试题(解析版)
- 陕西单招数学试题及答案
- 应收账款债权转让协议
- 四川省宜宾市长宁县2024-2025学年九年级上学期期末化学试题(含答案)
- 可行性报告商业计划书
评论
0/150
提交评论