




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Koch分形雪花图的面积计算一、问题叙述分形几何图形最基本的特征是自相似性,这种自相似性是指局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似。在具有自相似性的图形中,图形局部只是整体的缩影,而整体图形则是局部的放大。而本文我们要分析的是Koch分形雪花图,包含以下三个问题:1.描述Koch分形雪花2.证明Koch分形雪花图的边数为 3.求Koch分形雪花图的面积(数据),求 二、问题分析在分析Koch分形雪花图之前,我们首先介绍Koch分形曲线。Koch分形曲线的绘制原理是:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成四条线段的折线,如图2.1所
2、示:图2.1 对一条线段进行第一次Koch分形然后,对形成的四条直线段的每一条的中间的三分之一部分用等边三角形的两边代替,形成十六条线段的折线。这种迭代继续进行下去可以形成Koch分形曲线。在迭代过程中,图形中的点数将越来越多,而曲线的最终显示细节的多少将取决于迭代次数和显示系统的分辨率。设P1和P2分别是原始的两个端点,现在需要在直线段的中间依次插入点Q1,Q2,Q3以产生第一次迭代图形。显然,Q1位于P1右端直线段的三分之一处,Q3位于P1点右端直线段的三分之二处,而Q2点的位置可以看作由Q3绕Q1逆时针旋转60度而得到的,故可以处理 经过正交变换而得到 。算法如下:(1) (2) ;(3
3、)。在算法中,用正交矩阵A构造正交变换,其功能作用是对向量作旋转,使之成为长度不变的另一向量。在绘制Koch曲线的过程中,取旋转的角度为 ,则正交矩阵A应取为: 1.Koch分形雪花的描述Koch分形雪花的原始图形是等边三角形,它是由三条相等的线段围成的三角形。根据前面介绍的一条线段的Koch分形的原理可知,Koch分形雪花的形成是对等边三角形的三条边进行Koch分形,随着迭代次数的增加,即可形成Koch分形雪花图。2.证明Koch分形雪花图的边数为证:对于一条线段,第1次迭代生成的图形包含4条线段,第2次迭代后生成的共有16条线段,第3次迭代后共有64条线段,以此类推,第n次迭代后共有条线段
4、。所以,第n个图形(即第n-1次迭代)共有 条线段。对于该等边三角形,三条线段都进行Koch分形,进行n-1次迭代 ,生成的雪花图的的直线段数为,也即雪花图边数为: 。3.求Koch分形雪花图的面积(1)递推法首先,假设要进行分形的正三角形的边长为a,面积为S,则。设第一个图形为,面积为,则=S;第二个图形为 ,面积为,则;第三个图形为,面积为,则,以此类推,第n个图形为,面积为,则,依次迭代,将最终表示成的形式为: 括号内的和式为等比数列,首项为,公比为,一共(n-1)项,所以 = = 因此, = 其中。所以,当迭代次数趋于无穷大时,= (其中,a是正三角形的边长)结论:当时,Koch分形雪
5、花图的面积为初始正三角形面积的1.6倍。(2)格林公式法计算多边形面积法 多边形面积算法: 令可得区域D的面积计算公式为: ,其中是围绕多边形D的逆时针方向的闭合曲线。对进行划分, (j=1,2,n)参数方程: = = 所以,多边形面积公式为: 顶点按逆时针排列,且。根据上述原理,我们用MATLAB首先编写Koch分形雪花图形生成程序的编写,然后将生成的所有的点的横纵坐标放在一个数组中(第一列代表点的横坐标,第二列代表点的纵坐标),应用多边形面积算法求解Koch分形雪花的面积。最后验证随着迭代次数的增加,Koch分形雪花的面积是否收敛于1.6S(S代表原始正三角形的面积)。三、MATLAB实验
6、程序及注释程序一:%Koch函数实现一条线段Koch分形function p1 h1=Koch(a,b,c,f,h)%(a,b),(c,f)表示初始线段的两个端点;h表示迭代次数%p1表示迭代h次后,所有点的坐标;h1表示迭代h次后节点的个数p=a b;c f;n=2;%与x轴平行的那一条线段顺时针转转60度,其他两条逆时针旋转60度if (a=0)&&(c=10) A=cos(pi/3) sin(pi/3);-sin(pi/3) cos(pi/3);else A=cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3);endfor k=1:h%对指定
7、线段的进行h次迭代d=diff(p)/3;m=4*n-3;q=p(1:n-1,:);p(5:4:m,:)=p(2:n,:);p(2:4:m,:)=q+d;p(3:4:m,:)=q+d+d*A'p(4:4:m,:)=q+2*d;n=m;endp1=p;h1=m;plot(p(:,1),p(:,2),'b');hold on程序二:%Koch分形雪花图的生成程序function s,s1,s3,t,h0=tol(n)%s表示迭代次数趋于无穷大时,Koch分形雪花图的面积%s1表示用格林公式求多边形的面积法,求得n次迭代后,Koch分形雪花图的面积%s3表示用迭代法,求得n次
8、迭代后,Koch分形雪花图的面积%t表示s-s1的面积差值%h0表示第n次迭代后,Koch分形雪花图的节点个数%对正三角形的三边进行Koch分形p1 h1=Koch(0,0,10,0,n);p2 h2=Koch(5,5*sqrt(3),10,0,n);p3 h3=Koch(0,0,5,5*sqrt(3),n);%构造数组p,表示迭代n次后,所有节点点的坐标; p=p1;p(h2+1:1:2*h2-1,:)=p2(h2-1:-1:1,:);p(2*h3:1:3*h3-2,:)=p3(h3-1:-1:1,:);plot(p(:,1),p(:,2),'b');fill(p(:,1),
9、p(:,2),'b');s1=0;%格林公式求Koch分形雪花图的面积法for j=1:3*h1-3 s2=p(j,1)*p(j+1,2)-p(j+1,1)*p(j,2); s1=s1+s2;ends1=s1/2;s=1.6*(1.0/4)*sqrt(3)*100;s4=(1.0/4)*sqrt(3)*100; t1=1-(4.0/9)n;s3=(1+3*t1/5)*s4;%用迭代法求Koch分形雪花图的面积法t=s-s1;%计算随着迭代次数的增加,Koch分形雪花图的面积距离极限的逼近程度h0=3*h1-3;%计算n次迭代后,Koch分形雪花图的节点个数四、实验图形及数据在本
10、次实验中,我们采用由三个点构成的正三角形作为Koch分形雪花图的原始图形,该正三角形的边长为10。1.Koch分形雪花图 第0次迭代 第1次迭代 第2次迭代 第3次迭代 第4次迭代 第5次迭代 第6次迭代 第7次迭代 第8次迭代 第9次迭代经过9次迭代,Koch分形的雪花图的绘制基本完成。2.实验数据结果及分析用上述编写的MATLAB程序,算出第n次迭代后,用迭代法和格林公式法计算多边形面积法计算出此时图形的面积,并和迭代次数趋于无穷大时的面积比较,比较结果如下表所示。ns1s3sth0s1/s043.301343.301369.282025.980830.6250157.735057.735
11、069.282011.5470120.8333264.150064.150069.28205.1320480.9259367.001167.001169.28202.28091920.9671468.268368.268369.28201.01377680.9854568.831568.831569.28200.450530720.9935669.081869.081869.28200.2002122880.9971769.193069.193069.28200.0890491520.9987869.242569.242569.28200.03961966080.9994969.264569.264569.28200.01767864320.99971069.274269.274269.28200.007831457280.9999其中,n为迭代次数;s1是用格林公式求多边形的面积法,求得的n次迭代后Koch分形雪花图的面积;s3表示用迭代法,求得n次迭代后,Koch分形雪花图的面积;s表示迭代次数趋于无穷大时,Koch分形雪花图的面积;t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园电商推广合作合同(2篇)
- 2025企业员工劳动合同协议书
- 2025企业合同范本2
- 输卵管堵塞的临床护理
- 2025科技公司劳动合同样本参考
- 2025年监理工程师之合同管理提升训练试卷A卷附答案
- 2025年一级建造师之一建矿业工程实务基础试题库和答案要点
- 2025标准版商业店铺续租合同范本
- 藏医学专业就业能力展示
- 腹部创伤的临床护理
- 《汽车涂装》2024-2025学年第一学期工学一体化课程教学进度计划表
- 小学生涯回顾分享模板
- 机关财务课件
- 2025年冀教版七年级英语下册教学工作计划
- 成人雾化吸入护理课件
- 【MOOC】创造学-我爱创新-江西财经大学 中国大学慕课MOOC答案
- 三相异步电机基础培训
- 公对公劳务合同范例
- 2025新外研社版英语七年级下单词表
- 急救救援知识培训
- 脑血管支架置入术后护理
评论
0/150
提交评论