




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题三 导数与其应用一、考试内容导数概念及其几何意义导数及其应用二、考试要求(1)理解导数概念及其几何意义,掌握基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.。(2)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).。(3)会利用导数解决实际问题。三、命题热点分析近几年的高考试题,导数这一知识点是高考的必考内容,对导数的考查主要是有三个方面:一是考查
2、导数的运算与导数的几何意义,二是考查导数的简单应用,例如求函数的单调区间、极值与最值等,三是考查导数的综合应用.导数的几何意义以及简单应用通常以客观题的形式出现,属于容易题和中档题;而对于导数的综合应用,则主要是和函数、不等式、方程等联系在一起以解答题的形式进行考查,例如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题.。在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有导数试题,而且常考常新.以函数、不等式、方程等联系在一起以解答题的形式进行考查是高考命题的新趋势。四、知识回顾导数及应用导数的概念及几何意义导数及应用导数的运算导数及应用导数的应用导数
3、及应用(一)导数的概念及几何意义(1)平均变化率一般地,函数是其定义域内不同的两点,那么函数的变化率可用式子表示,这个式子称,函数平均变化率,记为=(2)曲线的切线切线的斜率:,切线的方程为:(4)导数的概念一般地,函数处的瞬间变化率是,称它为处的导数,记为,即(5)导数的几何意义处的导数的几何意义是:曲线的切线的斜率。(二)导数的运算(1)常见基本初等函数的导数公式(C为常数);, nN+;;.(a>0,且a1)(2)导数的运算法则法则1 法则2 .法则3 .(3)复合函数的求导一般地,由几
4、个函数复合而成的函数,称为复合函数。由则(三)导数应用(1)函数单调性的判断设函数在某个区间内可导,如果,那么在这个区间内单调递增;如果,那么在这个区间内单调递减;如果,那么在这个区间内是常数。(2)求函数的单调区间对可导函数的求单调区间的步骤:求的定义域求出令,求出全部驻点(补充定义:若函数在点处的导数,则称点为函数的驻点。)驻点把定义域分成几个区间,列表考查在这几个区间内的符号,就可确定的单调区间。(3)利用导数判断函数单调性的应用证明不等式研究方程根的个数求参数的值(或取值范围)求函数的值域(4)函数的极值函数的极值设函数附近有定义:)如果对附近的所有点,都有,则是函数的一个极大值。记作
5、:)如果对附近的所有点,都有,则是函数的一个极小值。记作:求导函数极值的步骤,设)求导数)求方程的所有实数根)检查在方程左右的值的符号,如果左正右负,那么在这个根处取极大值,如果左负右正,那么在这个根处取极小值。如果如果左正同号,那么在这个根处没有极值。特别注意:无意义的点也要讨论,即可先求出的根和无意义的点,这些点都称可疑点,再用定义去判断。(6)函数的最大值与最小值 函数的最大值与最小值一般地,在闭区间上的连续函数必有最大值与最小值,在开区间连续函数不一定有最大值与最小值。求函数的最大值与最小值的步骤设函数在闭区间上连续,在开区间可导,那么求函数在闭区间上的最最大值与最小值的步骤:)求在开
6、区间内的极值,)将的各极值与比较,其中最大的为最大值,最小的为最小值。(8)生活中的优化问题五、典型例题1、曲线在点处的切线方程(B)A.B.C.D.解析:,切点坐标为(1,1)2、2010全国卷理) 已知直线y=x+1与曲线相切,则的值为( )A.1 B. 2 C.-1 D.-2答案 B解:设切点,则,又.故答案 选B3.(2009全国卷理)曲线在点处的切线方程为( )A. B. C. D. 答案 B解,故切线方程为,即 故选B.4若曲线存在垂直于轴的切线,则实数的取值范围是 .解析 由题意该函数的定义域,由。因为存在垂直于轴的切线,故此时斜率为,问题转化为范围内导函数存在零点。解法1 (图
7、像法)再将之转化为与存在交点。当不符合题意,当时,如图1,数形结合可得显然没有交点,当如图2,此时正好有一个交点,故有应填或是。解法2 (分离变量法)上述也可等价于方程在内有解,显然可得5(2009浙江文)(本题满分15分)已知函数 (I)若函数的图象过原点,且在原点处的切线斜率是,求的值; (II)若函数在区间上不单调,求的取值范围解析 ()由题意得 又 ,解得,或 ()函数在区间不单调,等价于 导函数在既能取到大于0的实数,又能取到小于0的实数 即函数在上存在零点,根据零点存在定理,有, 即: 整理得:,解得6(2009湖北卷文)(本小题满分14分) 已知关于x的函数f(x)bx2cxbc
8、,其导函数为f+(x).令g(x)f+(x) ,记函数g(x)在区间-1、1上的最大值为M. ()如果函数f(x)在x1处有极值-,试确定b、c的值: ()若b>1,证明对任意的c,都有M>2: ()若MK对任意的b、c恒成立,试求k的最大值。本小题主要考察函数、函数的导数和不等式等基础知识,考察综合运用数学知识进行推理论证的能力和份额类讨论的思想(满分14分)(I)解析 ,由在处有极值可得解得或若,则,此时没有极值;若,则当变化时,的变化情况如下表:10+0极小值极大值当时,有极大值,故,即为所求。()证法1:当时,函数的对称轴位于区间之外。在上的最值在两端点处取得故应是和中较大
9、的一个即()解法1:(1)当时,由()可知;(2)当时,函数)的对称轴位于区间内,此时由有若则,于是若,则于是综上,对任意的、都有而当时,在区间上的最大值故对任意的、恒成立的的最大值为。 六、近几年高考试题分析1、(2011湖南) 曲线y在点M处的切线的斜率为()A B.C D.B【解析】 对y求导得到y,当x,得到y.(2009湖南卷文)若函数的导函数在区间上是增函数,则函数在区间上的图象可能是( )yababaoxoxybaoxyoxybA B C D解析 因为函数的导函数在区间上是增函数,即在区间上各点处的斜率是递增的,由图易知选A. 注意C中为常数噢.七、总结1.导数的概念及其运算是导
10、数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。八、命题热点(一)方法总结导
11、数是中学限选内容中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具。导数的概念及其运算是导数应用的基础,是高考重点考查的对象。要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法。应用导数解决实际问题的关键是要建立恰当的数学模型,了解导数概念的实际背景。应用导数求函数最值及极值的方法在例题讲解中已经有了比较详细的叙述。(二)2012年高考预测导数的考查方式以客观题为主,主要考查求导数的基本公式和法则,以及导数的几何意义。也可以解答题的形式出现,即以导数的几何意义为背景设置成导数与解析几何的综合题。导数的应用是重点,侧重于利
12、用导数确定函数的单调性和极值、最值、值域问题。(三)考点分析考点一:求导公式。例1.是的导函数,则的值是。 解析:,所以 答案:3 点评:本题考查多项式的求导法则。考点二:导数的几何意义。例2. 已知函数的图象在点处的切线方程是,则。 解析:因为,所以,由切线过点,可得点M的纵坐标为,所以,所以答案:3例3.曲线在点处的切线方程是。解析:,点处切线的斜率为,所以设切线方程为,将点带入切线方程可得,所以,过曲线上点处的切线方程为:答案: 点评:以上两小题均是对导数的几何意义的考查。考点三:导数的几何意义的应用。例4.已知曲线C:,直线,且直线与曲线C相切于点,求直线的方程及切点坐标。解析:直线过
13、原点,则。由点在曲线C上,则斜率为(舍)此时,所以,直线的方程为答案:直线的方程为 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。考点四:函数的单调性。例5.已知在R上是减函数,求的取值范围。解析:函数的导数为对于都有时,为减函数。由可得,解得。所以,当时,函数对为减函数。(1) 当时,。由函数在R上的单调性,可知当是,函数对为减函数。(2) 当时,函数在R上存在增区间。所以,当时,函数在R上不是单调递减函数。综合(1)(2)(3)可知。答案: 点评:本题考查导数在函数单调
14、性中的应用。对于高次函数单调性问题,要有求导意识。考点五:函数的极值。例6. 设函数在及时取得极值。(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围。解析:(1),因为函数在及取得极值,则有,即,解得,。(2)由()可知,。当时,;当时,;当时,。所以,当时,取得极大值,又,。则当时,的最大值为。因为对于任意的,有恒成立,所以,解得或,因此的取值范围为。答案:(1),;(2)。 点评:本题考查利用导数求函数的极值。求可导函数的极值步骤:求导数;求的根;将的根在数轴上标出,得出单调区间,由在各区间上取值的正负可确定并求出函数的极值。考点六:函数的最值。例7. 已知为实数,。求导数
15、;(2)若,求在区间上的最大值和最小值。解析:(1),。(2),。令,即,解得或, 则和在区间上随的变化情况如下表:000增函数极大值减函数极小值增函数0,。所以,在区间上的最大值为,最小值为。答案:(1);(2)最大值为,最小值为。 点评:本题考查可导函数最值的求法。求可导函数在区间上的最值,要先求出函数在区间上的极值,然后与和进行比较,从而得出函数的最大最小值。考点七:导数的综合性问题。例8. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为。(1)求,的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值。解析: (1)为奇函数,即,的最小值为,又直线的斜率为,因此
16、,(2)。,列表如下:增函数极大减函数极小增函数所以函数的单调增区间是和,在上的最大值是,最小值是。答案:(1),;(2)最大值是,最小值是。点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。九、巩固练习l 选择题1. 已知曲线的一条切线的斜率为,则切点的横坐标为( A )A1B2C3D42. 曲线在点(1,1)处的切线方程为( B )ABCD3. 函数在处的导数等于 ( D )A1B2C3D44. 已知函数的解析式可能为( A )ABCD5. 函数,已知在时取得极值,则=( D )(A)2(B)3(C)4(D)56. 函数是减函数的区间为( D
17、 )()()()()7. 若函数的图象的顶点在第四象限,则函数的图象是( A )xyoAxyoDxyoCxyoB8. 函数在区间上的最大值是(A)ABCD9. 函数的极大值为,极小值为,则为 ( A )A0B1 C2D410. 三次函数在内是增函数,则 ( A )AB CD11. 在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是(D )A3B2C1D012. 函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点(A )A1个B2个C3个D 4个l 填空题13. 曲线在点处的切线与轴、直线所围成的三角形的面积为。14. 已知曲线,则过点“改为在点”的切线方程
18、是15. 已知是对函数连续进行n次求导,若,对于任意,都有=0,则n的最少值为7 。16. 某公司一年购买某种货物400吨,每次都购买吨,运费为4万元次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则20吨l 解答题17. 已知函数,当时,取得极大值7;当时,取得极小值求这个极小值及的值解:。据题意,1,3是方程的两个根,由韦达定理得,极小值极小值为25,。18. 已知函数(1)求的单调减区间;(2)若在区间2,2.上的最大值为20,求它在该区间上的最小值.解:(1)令,解得所以函数的单调递减区间为(2)因为所以因为在(1,3)上,所以在1,2上单调递增,又由于在2,1上单调
19、递减,因此和分别是在区间上的最大值和最小值.于是有,解得故 因此即函数在区间上的最小值为7.19. 设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线。(1)用表示;(2)若函数在(1,3)上单调递减,求的取值范围。解:(1)因为函数,的图象都过点(,0),所以, 即.因为所以.又因为,在点(,0)处有相同的切线,所以而将代入上式得 因此故,(2).当时,函数单调递减.由,若;若由题意,函数在(1,3)上单调递减,则所以又当时,函数在(1,3)上单调递减.所以的取值范围为20. 设函数,已知是奇函数。(1)求、的值。(2)求的单调区间与极值。解:(1),。从而是一个奇函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年设备的租赁合同范本
- 新质生产力企业层面
- 市北区新质生产力
- 2025年针对无效合同的识别与处理措施研究
- 2025买卖合同的注意事项
- 2025年房地产经纪人之房地产交易制度政策通关提分题库及完整答案
- 2025年家庭装修质量保证合同
- 大同新质生产力
- 安全生产大检查督查检查表
- 2025绿化项目设计合同范本
- 水产养殖公司合伙人股权分配协议
- 特殊教育导论 课件 第一章 特殊教育的基本概念
- 急救医疗资源整合优化研究
- 《局域网组建》课件
- 牛津译林7A-Unit3、4单元复习
- 专题四“挺膺担当”主题团课
- 国家义务教育质量监测初中美术试题
- 超声波探伤作业指导书
- 课程思政视域下小学音乐教学策略初探 论文
- 智能高速铁路概论-课件-第一章-世界智能铁路发展-
- 群众性战伤救治技术知识考试题库-下(多选、判断题部分)
评论
0/150
提交评论