




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、9上海龙文教育 数学 学科导学案 (第 阶段,第 次课)教师: 学生: 年级: 日期: 2015 年 月 日 星期: 时段: 课 题函数与方程、不等式一、本次课授课目的及考点分析:授课目的:1. 能运用函数的知识解决方程(组)、不等式的有关问题2. 会分析函数与方程(组)、不等式之间的关系,并建立适当的数学模型解决实际问题。教学重点:理解函数与方程、不等式之间的关系教学难点:用所学知识解决实际问题 二、本次课的内容: 函数、方程(组)、不等式教学过程一、错题回顾:二、教授新课: 【考点精讲】考点一:函数与方程(组)综合应用例1直线y2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b0
2、的解是x_【分析】直线y2x+b与x轴的交点坐标是(2,0),则x2时,y0,关于x的方程2x+b0的解是x2。例2某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【分析】(1)根据利润的等量关系,列出方程,再根据题意,舍掉x1(2)代入即可考点二:函数与不等式(组)综合应用例1对非负实数x“四舍五入”到个位的值记为<x>
3、即:当n为非负整数时,如果则<x>n如:<0><0.48>0,<0.64><1.493>1,<2>2,<3.5><4.12>4,试解决下列问题: (1)填空:<> (为圆周率); 如果<2x1>3,则实数x的取值范围为 ; (2)当;举例说明不恒成立; (3)求满足的所有非负实数x的值; (4)设n为常数,且为正整数,函数yx2x的自变量x在nxn1范围内取值时,函数值y为整数的个数记为a;满足的所有整数k的个数记为b. 求证:ab2n. 【分析】(1)第一空:3,所以填3;
4、第二空:根据题中的定义得3-2x13+,解这个不等式组,可求得x的取值范围;(2)根据定义进行证明和举反例;(3)用图象法解,可设y<x>,y,在直角坐标系中画出这两函数的图象,交点的横坐标就是x的值(4)根据在nxn1范围内y随x的增大而增大,所以可得出y的取值范围,从而求出y的整数解的个数,同样地由定义得,把此式两边平方可得k与y的取值范围一致所以ab.例2国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元已知这种设备的月产量x(套)与每套的售
5、价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系. (1)直接写出y2与x之间的函数关系式; (2)求月产量x的范围; (3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少? 【分析】(1)用待定系数法,根据图形容易求解;(2)根据题意列不等式组,可求得月产量x的范围;(3)利用利润=总售价-总成本,根据二次函数的性质求解.考点三:方程(组)与不等式(组)综合应用例1(2010四川内江)已知非负数a,b,c满足条件ab7,ca5,设Sabc的最大值为m,最小值为n,则mn.【分析】把ab7和ca5两式相加,即可
6、得bc12,所以Sabca12,故确定S的最大值和最小值的关键就是确实a的取值范围.由ab7得b7a,根据a0,b0,有7a0,所以0a7;由ca5,得c5a,因为c0,所以5a0,即a5,由于a0,所以一定有a5,所以0a7,所以m71219,n01212,从而mn707.例2郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元用124元恰好可以买到3个书包和2本词典 (1)每个书包和每本词典的价格各是多少元? (2)郑老师计划用l000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后余下不少于lOO元且不超过120元的钱购买体育用品共有哪
7、几种购买书包和词典的方案?【分析】利用购买3个书包和2本词典的总价及二者单价间的关系可用一元一次方程求出书包和词典的单价;而在(2)中,根据购买书包和词典的价格范围列一元一次不等式组求出书包的范围,再根据书包的取值为正整数求出方案考点四:函数、方程(组)与不等式(组)综合应用例1某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。(1)每名熟练工
8、和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?【分析】(1)可列方程组解决问题;(2)是一个不等问题,可设需熟练工m名可列出二元一次方程和不等式;(3)根据一次函数性质解答.例2(2010湖北十堰)如图所示,某地区对某种药品的需求量y1(万件)
9、,供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=x + 70,y2=2x38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.Ox(元/件)y(万件)y1=x+70y2=2x38【分析】(1)由题意知当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定
10、需求量,即把y1=x + 70,y2=2x38联立方程组求解.(2)求该药品的需求量低于供应量时的价格范围,从图象上看就是求交点右侧部分所对应的自变量x的范围.(3)正确理解题意是关键,通过联立方程组求解.稳定需求量增加6万件,即y1=34+6=40万件;供应量等于需求量,即y1=y2.三、课内练习1.体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米) (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围); (2)若矩形ABCD的面积为50平方米,且ABAD,请求出此时AB的长.
11、2.为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴某市农机公司筹集到资金130万元,用于一次性购进A、B两种型号的收割机共30台根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元其中,收割机的进价和售价见下表:A型收割机B型收割机进价(万元/台)5.33.6售价(万元/台)64设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元(1)试写出y与x的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择?(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为
12、多少万元?3.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?如果先进行精加工,然后进行粗加工.试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?5.已知关于x的一元二次方程x2 = 2(1m)xm2 的两实数根为x1,x2(1)求m的取值范围;(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值6.已知关于x的方程(1)若这个方程有实数根,求k的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年眼科常见疾病诊断与治疗真题答案及解析
- 2025年妇科常见疾病诊断与治疗知识综合测试答案及解析
- 2025年肾脏病学慢性肾病综合治疗策略竞赛答案及解析
- 2025年肾脏病学肾脏病原因诊断筛查题答案及解析
- 2025年慢性病管理糖尿病患者的综合管理策略模拟考试卷答案及解析
- 2025年生殖泌尿科常见疾病诊疗试卷答案及解析
- 新质生产力重大突破
- 2025年肿瘤学肿瘤转移病例分析与诊疗策略模拟测试答案及解析
- 怀远发展新质生产力
- 新质生产力与创新:申论解析
- 浙江爱生药业有限公司新增年产12亿单位药品制剂自动生产检测线升级技术改造项目环评报告
- 2025年律师培训试题(含答案)
- 2025年三力模拟测试题及答案
- 西畴殡葬管理办法
- 脑脓肿病例分析课件
- 公立医院资金管理办法
- 边坡作业安全教育培训
- 印染工厂设计
- ktv安全消防管理制度
- 《子宫颈癌筛查规范(2025年版)》解读
- 政府夜市活动方案
评论
0/150
提交评论